Back to Search
Start Over
The Equivalent Circuit of Single Crab Muscle Fibers As Determined by Impedance Measurements with Intracellular Electrodes
- Source :
- The Journal of General Physiology; July 1967, Vol. 50 Issue: 6 p1785-1806, 22p
- Publication Year :
- 1967
-
Abstract
- The input impedance of muscle fibers of the crab was determined with microelectrodes over the frequency range 1 cps to 10 kc/sec. Care was taken to analyze, reduce, and correct for capacitive artifact. One dimensional cable theory was used to determine the properties of the equivalent circuit of the membrane admittance, and the errors introduced by the neglect of the three dimensional spread of current are discussed. In seven fibers the equivalent circuit of an element of the membrane admittance must contain a DC path and two capacitances, each in series with a resistance. In two fibers, the element of membrane admittance could be described by one capacitance in parallel with a resistance. In several fibers there was evidence for a third very large capacitance. The values of the elements of the equivalent circuit depend on which of several equivalent circuits is chosen. The circuit (with a minimum number of elements) that was considered most reasonably consistent with the anatomy of the fiber has two branches in parallel: one branch having a resistance Re in series with a capacitance Ce; the other branch having a resistance Rb in series with a parallel combination of a resistance Rm and a capacitance Cm. The average circuit values (seven fibers) for this model, treating the fiber as a cylinder of sarcolemma without infoldings or tubular invaginations, are Re = 21 ohm cm2; Ce = 47 µf/cm2; Rb = 10.2 ohm cm2; Rm = 173 ohm cm2; Cm = 9.0 µf/cm2. The relation of this equivalent circuit and another with a nonminimum number of circuit elements to the fine structure of crab muscle is discussed. In the above equivalent circuit Rm and Cm are attributed to the sarcolemma; Re and Ce, to the sarcotubular system; and Rb, to the amorphous material found around crab fibers. Estimates of actual surface area of the sarcolemma and sarcotubular system permit the average circuit values to be expressed in terms of unit membrane area. The values so expressed are consistent with the dielectric properties of predominantly lipid membranes.
Details
- Language :
- English
- ISSN :
- 00221295 and 15407748
- Volume :
- 50
- Issue :
- 6
- Database :
- Supplemental Index
- Journal :
- The Journal of General Physiology
- Publication Type :
- Periodical
- Accession number :
- ejs57379455
- Full Text :
- https://doi.org/10.1085/jgp.50.6.1785