Back to Search Start Over

Friend murine leukemia virus-induced leukemia is associated with the formation of mink cell focus-inducing viruses and is blocked in mice expressing endogenous mink cell focus-inducing xenotropic viral envelope genes.

Authors :
Ruscetti, S
Davis, L
Feild, J
Oliff, A
Source :
The Journal of Experimental Medicine; September 1981, Vol. 154 Issue: 3 p907-920, 14p
Publication Year :
1981

Abstract

In these studies, we have shown data that are consistent with the hypothesis that mink cell focus-inducing viruses (MCF) play an important role in the generation of an erythroproliferative disease developing after injection of certain strains of newborn mice with ecotropic Friend murine leukemia virus (F-MuLV). Resistance to this disease is correlated with the endogenous expression of an MCF/xenotropic virus-gp70-related protein that may interfere with the replication or spread of MCF viruses. These ideas are supported by the following observations: (a) after infection with F-MuLV, only 6/13 strains of mice-developed disease, and studies with crosses between susceptible and resistant strains indicated that resistance was dominant. Although F-MuLV was shown to replicate equally well in all strains tested, viruses coding for MCF-specific viral envelope proteins could be detected only in the spleens of mice from strains that were resistant to F-MuLV-induced disease and not in the spleens of mice from strains that were resistant to F-MuLV-induced disease; (b) a Friend MCF (Fr-MCF) virus isolated from the spleen of an F-MuLV-infected mouse from a susceptible strain induced the same erythroproliferative disease when injected as an appropriate pseudotype into mice from susceptible but not resistant strains of mice; and (c) resistant but not susceptible strains of mice endogenously express MCF/xenotropic virus-related envelope glycoproteins that may be responsible for resistance by blocking receptors for MCF viruses. These results not only indicate that Fr-MCF virus is a crucial intermediate in the induction of disease by F-MuLV, but also suggest that a novel gene, either an MCF/xenotropic virus-related envelope gene or a gene controlling its expression, is responsible for resistance to erythroleukemia induced by F-MuLV.

Details

Language :
English
ISSN :
00221007 and 15409538
Volume :
154
Issue :
3
Database :
Supplemental Index
Journal :
The Journal of Experimental Medicine
Publication Type :
Periodical
Accession number :
ejs57390878
Full Text :
https://doi.org/10.1084/jem.154.3.907