Back to Search Start Over

Self-Terminated Electroless Deposition of Surfactant-Free and Monodispersed Pt Nanoparticles on Carbon Fiber Microelectrodes for Sensitive Detection of H2O2Released from Living Cells

Authors :
Tong, Yuxi
Wang, Lifen
Song, Jiajia
Zhang, Mengyue
Qi, Hetong
Ding, Shujiang
Qi, Honglan
Source :
Analytical Chemistry; 20210101, Issue: Preprints
Publication Year :
2021

Abstract

We report a self-terminated electroless deposition method to prepare surfactant-free and monodispersed Pt nanoparticle (NP)-modified carbon fiber microelectrodes (Pt NP/CFEs) for electrochemical detection of hydrogen peroxide (H2O2) released from living cells. The surfactant-free and monodispersed Pt NPs with a uniform size of 65 nm are spontaneously deposited on a CFE surface by immersing an exposed carbon fiber (CF) of CFE in the PtCl42–solution, in which an exposed CF can be used as the reducing agent and stabilizer. A self-terminated electroless deposition method is demonstrated, in which the density and size of Pt NPs on a CFE surface do not increase when the reaction time increases from 20 to 60 min. The self-terminated electroless deposition process not only can effectively avoid any manual electrode modification and thus largely minimize person-to-person and electrode-to-electrode deviations but also can avoid the use of any extra reductant or surfactant in the fabrication process. Therefore, Pt NPs/CFEs, with good reproducibility and sensitivity, not only exhibit high electrocatalytic activity toward the oxidation of H2O2but also maintain the spatial resolution of CFEs. Moreover, Pt NPs/CFEs can detect H2O2with a wide linear range of 0.5–80 μM and a low detection limit of 0.17 μM and then can be successfully applied in the monitoring of H2O2released from RAW 264.7 cells. The self-terminated electroless deposition method can also be extended to selectively prepare other metal NP-modified CFEs, such as Au NPs/CFEs or Ag NPs/CFEs, by choosing the metal ions with higher reduction potential as precursors. This work provides a simple, straightforward, and general method for the preparation of small, surfactant-free, and monodispersed metal NP-modified CFEs with high sensitivity, reproducibility, and spatial resolution.

Details

Language :
English
ISSN :
00032700 and 15206882
Issue :
Preprints
Database :
Supplemental Index
Journal :
Analytical Chemistry
Publication Type :
Periodical
Accession number :
ejs58404903
Full Text :
https://doi.org/10.1021/acs.analchem.1c04299