Back to Search Start Over

Revival of Insulating Polyethylenimine by Creatively Carbonizing with Perylene into Highly Crystallized Carbon Dots as the Cathode Interlayer for High-Performance Organic Solar Cells

Authors :
Dong, Yiman
Yu, Runnan
Zhao, Biao
Gong, Yongshuai
Jia, Haoran
Ma, Zongwen
Gao, Huaizhi
Tan, Zhan’ao
Source :
ACS Applied Materials & Interfaces; 20220101, Issue: Preprints
Publication Year :
2022

Abstract

The development of new electron transporting layer (ETL) materials to improve the charge carrier extraction and collection ability between cathode and the active layer has been demonstrated to be an effective approach to enhance the photovoltaic performance of organic solar cells (OSCs). Herein, water-soluble carbon dots (CDs) as ETL material have been creatively synthesized by a vigorous chemical reaction between polyethylenimine (PEI) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) via a simple one-step hydrothermal method. Taking full advantage of the high electron transfer property of PTCDA and the work function (WF) reduction ability of PEI, CD gained high electron mobility due to its large π-conjugated area and reduced the WFof indium tin oxide (ITO) by 0.75 eV. As for the photovoltaic performance of devices, inverted OSCs based on CDs have achieved a high power conversion efficiency (PCE) of 17.35%, exhibiting no burn-in effect with no reduction in PCE after more than 4000 h of storage. The successful application of CDs in OPV has developed a new avenue for designing efficient ETL materials that benefits the photovoltaic performance of OSCs.

Details

Language :
English
ISSN :
19448244
Issue :
Preprints
Database :
Supplemental Index
Journal :
ACS Applied Materials & Interfaces
Publication Type :
Periodical
Accession number :
ejs58612565
Full Text :
https://doi.org/10.1021/acsami.1c23494