Back to Search Start Over

Biomaterial and biocompatibility evaluation of tunicate nanocellulose for tissue engineering

Authors :
Apelgren, Peter
Sämfors, Sanna
Säljö, Karin
Mölne, Johan
Gatenholm, Paul
Troedsson, Christofer
Thompson, Eric M.
Kölby, Lars
Source :
Biomaterials Advances; 20220101, Issue: Preprints
Publication Year :
2022

Abstract

Extracellular matrix fibril components, such as collagen, are crucial for the structural properties of several tissues and organs. Tunicate-derived cellulose nanofibrils (TNC) combined with living cells could become the next gold standard for cartilage and soft-tissue repair, as TNC fibrils present similar dimensions to collagen, feasible industrial production, and chemically straightforward and cost-efficient extraction procedures. In this study, we characterized the physical properties of TNC derived from aquaculture production in Norwegian fjords and evaluated its biocompatibility regarding induction of an inflammatory response and foreign-body reactions in a Wistar rat model. Additionally, histologic and immunohistochemical analyses were performed for comparison with expanded polytetrafluoroethylene (ePTFE) as a control. The average length of the TNC as determined by atomic force microscopy was tunable from 3 μm to 2.4 μm via selection of a various number of passages through a microfluidizer, and rheologic analysis showed that the TNC hydrogels were highly shear-thinning and with a viscosity dependent on fibril length and concentration. As a bioink, TNC exhibited excellent rheological and printability properties, with constructs capable of being printed with high resolution and fidelity. We found that post-print cross-linking with alginate stabilized the construct shape and texture, which increased its ease of handling during surgery. Moreover, after 30 days in vivo, the constructs showed a highly-preserved shape and fidelity of the grid holes, with these characteristics preserved after 90 days and with no signs of necrosis, infection, acute inflammation, invasion of neutrophil granulocytes, or extensive fibrosis. Furthermore, we observed a moderate foreign-body reaction involving macrophages, lymphocytes, and giant cells in both the TNC constructs and PTFE controls, although TNC was considered a non-irritant biomaterial according to ISO 10993-6 as compared with ePTFE. These findings represent a milestone for future clinical application of TNC scaffolds for tissue repair.

Details

Language :
English
ISSN :
27729516 and 27729508
Issue :
Preprints
Database :
Supplemental Index
Journal :
Biomaterials Advances
Publication Type :
Periodical
Accession number :
ejs59590835
Full Text :
https://doi.org/10.1016/j.bioadv.2022.212828