Back to Search Start Over

Structural basis of sodium-dependent bile salt uptake into the liver

Authors :
Goutam, Kapil
Ielasi, Francesco S.
Pardon, Els
Steyaert, Jan
Reyes, Nicolas
Source :
Nature; 20220101, Issue: Preprints p1-6, 6p
Publication Year :
2022

Abstract

The liver takes up bile salts from blood to generate bile, enabling absorption of lipophilic nutrients and excretion of metabolites and drugs1. Human Na+–taurocholate co-transporting polypeptide (NTCP) is the main bile salt uptake system in liver. NTCP is also the cellular entry receptor of human hepatitis B and D viruses2,3(HBV/HDV), and has emerged as an important target for antiviral drugs4. However, the molecular mechanisms underlying NTCP transport and viral receptor functions remain incompletely understood. Here we present cryo-electron microscopy structures of human NTCP in complexes with nanobodies, revealing key conformations of its transport cycle. NTCP undergoes a conformational transition opening a wide transmembrane pore that serves as the transport pathway for bile salts, and exposes key determinant residues for HBV/HDV binding to the outside of the cell. A nanobody that stabilizes pore closure and inward-facing states impairs recognition of the HBV/HDV receptor-binding domain preS1, demonstrating binding selectivity of the viruses for open-to-outside over inward-facing conformations of the NTCP transport cycle. These results provide molecular insights into NTCP ‘gated-pore’ transport and HBV/HDV receptor recognition mechanisms, and are expected to help with development of liver disease therapies targeting NTCP.

Details

Language :
English
ISSN :
00280836 and 14764687
Issue :
Preprints
Database :
Supplemental Index
Journal :
Nature
Publication Type :
Periodical
Accession number :
ejs59649592
Full Text :
https://doi.org/10.1038/s41586-022-04723-z