Back to Search Start Over

Formation of robust bound states of interacting microwave photons

Authors :
Morvan, A.
Andersen, T. I.
Mi, X.
Neill, C.
Petukhov, A.
Kechedzhi, K.
Abanin, D. A.
Michailidis, A.
Acharya, R.
Arute, F.
Arya, K.
Asfaw, A.
Atalaya, J.
Bardin, J. C.
Basso, J.
Bengtsson, A.
Bortoli, G.
Bourassa, A.
Bovaird, J.
Brill, L.
Broughton, M.
Buckley, B. B.
Buell, D. A.
Burger, T.
Burkett, B.
Bushnell, N.
Chen, Z.
Chiaro, B.
Collins, R.
Conner, P.
Courtney, W.
Crook, A. L.
Curtin, B.
Debroy, D. M.
Del Toro Barba, A.
Demura, S.
Dunsworth, A.
Eppens, D.
Erickson, C.
Faoro, L.
Farhi, E.
Fatemi, R.
Flores Burgos, L.
Forati, E.
Fowler, A. G.
Foxen, B.
Giang, W.
Gidney, C.
Gilboa, D.
Giustina, M.
Grajales Dau, A.
Gross, J. A.
Habegger, S.
Hamilton, M. C.
Harrigan, M. P.
Harrington, S. D.
Hoffmann, M.
Hong, S.
Huang, T.
Huff, A.
Huggins, W. J.
Isakov, S. V.
Iveland, J.
Jeffrey, E.
Jiang, Z.
Jones, C.
Juhas, P.
Kafri, D.
Khattar, T.
Khezri, M.
Kieferová, M.
Kim, S.
Kitaev, A. Y.
Klimov, P. V.
Klots, A. R.
Korotkov, A. N.
Kostritsa, F.
Kreikebaum, J. M.
Landhuis, D.
Laptev, P.
Lau, K.-M.
Laws, L.
Lee, J.
Lee, K. W.
Lester, B. J.
Lill, A. T.
Liu, W.
Locharla, A.
Malone, F.
Martin, O.
McClean, J. R.
McEwen, M.
Meurer Costa, B.
Miao, K. C.
Mohseni, M.
Montazeri, S.
Mount, E.
Mruczkiewicz, W.
Naaman, O.
Neeley, M.
Nersisyan, A.
Newman, M.
Nguyen, A.
Nguyen, M.
Niu, M. Y.
O’Brien, T. E.
Olenewa, R.
Opremcak, A.
Potter, R.
Quintana, C.
Rubin, N. C.
Saei, N.
Sank, D.
Sankaragomathi, K.
Satzinger, K. J.
Schurkus, H. F.
Schuster, C.
Shearn, M. J.
Shorter, A.
Shvarts, V.
Skruzny, J.
Smith, W. C.
Strain, D.
Sterling, G.
Su, Y.
Szalay, M.
Torres, A.
Vidal, G.
Villalonga, B.
Vollgraff-Heidweiller, C.
White, T.
Xing, C.
Yao, Z.
Yeh, P.
Yoo, J.
Zalcman, A.
Zhang, Y.
Zhu, N.
Neven, H.
Bacon, D.
Hilton, J.
Lucero, E.
Babbush, R.
Boixo, S.
Megrant, A.
Kelly, J.
Chen, Y.
Smelyanskiy, V.
Aleiner, I.
Ioffe, L. B.
Roushan, P.
Source :
Nature; December 2022, Vol. 612 Issue: 7939 p240-245, 6p
Publication Year :
2022

Abstract

Systems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles1. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multiparticle bound states2–9. Here we develop a high-fidelity parameterizable fSim gate and implement the periodic quantum circuit of the spin-½ XXZ model in a ring of 24 superconducting qubits. We study the propagation of these excitations and observe their bound nature for up to five photons. We devise a phase-sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the idea that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.

Details

Language :
English
ISSN :
00280836 and 14764687
Volume :
612
Issue :
7939
Database :
Supplemental Index
Journal :
Nature
Publication Type :
Periodical
Accession number :
ejs61376229
Full Text :
https://doi.org/10.1038/s41586-022-05348-y