Back to Search
Start Over
On the Differential Spectrum and the APcN Property of a Class of Power Functions Over Finite Fields
- Source :
- IEEE Transactions on Information Theory; January 2023, Vol. 69 Issue: 1 p582-597, 16p
- Publication Year :
- 2023
-
Abstract
- In this paper, we investigate the power function <inline-formula> <tex-math notation="LaTeX">$F(x)=x^{d}$ </tex-math></inline-formula> over the finite field <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{2^{4n}}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is a positive integer and <inline-formula> <tex-math notation="LaTeX">$d=2^{3n}+2^{2n}+2^{n}-1$ </tex-math></inline-formula>. We prove that this power function is AP<inline-formula> <tex-math notation="LaTeX">$c\text{N}$ </tex-math></inline-formula> with respect to all <inline-formula> <tex-math notation="LaTeX">$c\in \mathbb {F}_{2^{4n}}\setminus \{1\}$ </tex-math></inline-formula> satisfying <inline-formula> <tex-math notation="LaTeX">$c^{2^{2n}+1}=1$ </tex-math></inline-formula>, and we determine its <inline-formula> <tex-math notation="LaTeX">$c$ </tex-math></inline-formula>-differential spectrum. To the best of our knowledge, this is the second class of AP<inline-formula> <tex-math notation="LaTeX">$c\text{N}$ </tex-math></inline-formula> power functions over finite fields of even characteristic. By the same proof ideas, we completely determine the differential spectrum of this function, and give an affirmative answer to a recent conjecture proposed by Budaghyan, Calderini, Carlet, Davidova and Kaleyski.
Details
- Language :
- English
- ISSN :
- 00189448 and 15579654
- Volume :
- 69
- Issue :
- 1
- Database :
- Supplemental Index
- Journal :
- IEEE Transactions on Information Theory
- Publication Type :
- Periodical
- Accession number :
- ejs61553193
- Full Text :
- https://doi.org/10.1109/TIT.2022.3198133