Back to Search Start Over

On the Differential Spectrum and the APcN Property of a Class of Power Functions Over Finite Fields

Authors :
Tu, Ziran
Li, Nian
Wu, Yanan
Zeng, Xiangyong
Tang, Xiaohu
Jiang, Yupeng
Source :
IEEE Transactions on Information Theory; January 2023, Vol. 69 Issue: 1 p582-597, 16p
Publication Year :
2023

Abstract

In this paper, we investigate the power function <inline-formula> <tex-math notation="LaTeX">$F(x)=x^{d}$ </tex-math></inline-formula> over the finite field <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{2^{4n}}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is a positive integer and <inline-formula> <tex-math notation="LaTeX">$d=2^{3n}+2^{2n}+2^{n}-1$ </tex-math></inline-formula>. We prove that this power function is AP<inline-formula> <tex-math notation="LaTeX">$c\text{N}$ </tex-math></inline-formula> with respect to all <inline-formula> <tex-math notation="LaTeX">$c\in \mathbb {F}_{2^{4n}}\setminus \{1\}$ </tex-math></inline-formula> satisfying <inline-formula> <tex-math notation="LaTeX">$c^{2^{2n}+1}=1$ </tex-math></inline-formula>, and we determine its <inline-formula> <tex-math notation="LaTeX">$c$ </tex-math></inline-formula>-differential spectrum. To the best of our knowledge, this is the second class of AP<inline-formula> <tex-math notation="LaTeX">$c\text{N}$ </tex-math></inline-formula> power functions over finite fields of even characteristic. By the same proof ideas, we completely determine the differential spectrum of this function, and give an affirmative answer to a recent conjecture proposed by Budaghyan, Calderini, Carlet, Davidova and Kaleyski.

Details

Language :
English
ISSN :
00189448 and 15579654
Volume :
69
Issue :
1
Database :
Supplemental Index
Journal :
IEEE Transactions on Information Theory
Publication Type :
Periodical
Accession number :
ejs61553193
Full Text :
https://doi.org/10.1109/TIT.2022.3198133