Back to Search Start Over

A frequency error estimation for isogeometric analysis of Kirchhoff–Love cylindrical shells

Authors :
Sun, Zhuangjing
Xu, Xiaolan
Lin, Zhiwei
Wang, Dongdong
Source :
Frontiers of Structural and Civil Engineering; 20240101, Issue: Preprints p1-12, 12p
Publication Year :
2024

Abstract

A frequency error estimation is presented for the isogeometric free vibration analysis of Kirchhoff–Love cylindrical shells using both quadratic and cubic basis functions. By analyzing the discrete isogeometric equations with the aid of harmonic wave assumption, the frequency error measures are rationally derived for the quadratic and cubic formulations for Kirchhoff–Love cylindrical shells. In particular, the governing relationship of the continuum frequency for Kirchhoff–Love cylindrical shells is naturally embedded into the frequency error measures without the need of explicit frequency expressions, which usually are not trivial for the shell problems. In accordance with these theoretical findings, the 2nd and 4th orders of frequency accuracy are attained for the isogeometric schemes using quadratic and cubic basis functions, respectively. Numerical results not only thoroughly verify the theoretical convergence rates of frequency solutions, but also manifest an excellent magnitude match between numerical and theoretical frequency errors for the isogeometric free vibration analysis of Kirchhoff–Love cylindrical shells.

Details

Language :
English
ISSN :
20952430 and 20952449
Issue :
Preprints
Database :
Supplemental Index
Journal :
Frontiers of Structural and Civil Engineering
Publication Type :
Periodical
Accession number :
ejs65058842
Full Text :
https://doi.org/10.1007/s11709-023-0006-x