Back to Search Start Over

Microporous Polyelectrolyte Complexes by Hydroplastic Foaming

Authors :
Liang, Zi-Xuan
Chen, Hao-Dong
Hu, Chun-Kui
Fang, Yi-Xuan
Fang, You-Peng
Lu, Chun-Xin
Wang, Jing
Mi, Li
Chen, Xia-Chao
Source :
Langmuir; January 2024, Vol. 40 Issue: 3 p1892-1901, 10p
Publication Year :
2024

Abstract

Polyelectrolyte complexes (PECs) have emerged as an attractive category of materials for their water processability and some similarities to natural biopolymers. Herein, we employ the intrinsic hydroplasticity of PEC materials to enable the generation of porous structures with the aid of gas foaming. Such foamable materials are fabricated by simply mixing polycation, polyanion, and a UV-initiated chemical foaming agent in an aqueous solution, followed by molding into thin films. The gas foaming of the PEC films can be achieved upon exposure to UV illumination under water, where the films are plasticized and the gaseous products from the photolysis of foaming agents afford the formation, expanding, and merging of numerous bubbles. The porosity and morphology of the resulting porous films can be customized by tuning film composition, foaming conditions, and especially the degree of plasticizing effect, illustrating the high flexibility of this hydroplastic foaming method. Due to the rapid initiation of gas foaming, the present method enables the formation of porous structures via an instant one-step process, much more efficient than those existing strategies for porous PEC materials. More importantly, such a pore-forming mechanism might be extended to other hydroplastic materials (e.g., biopolymers) and help to yield hydroplasticity-based processing strategies.

Details

Language :
English
ISSN :
07437463 and 15205827
Volume :
40
Issue :
3
Database :
Supplemental Index
Journal :
Langmuir
Publication Type :
Periodical
Accession number :
ejs65130952
Full Text :
https://doi.org/10.1021/acs.langmuir.3c03285