Back to Search Start Over

Pseudo-Data Based Self-Supervised Federated Learning for Classification of Histopathological Images

Authors :
Zhang, Yuanming
Li, Zheng
Han, Xiangmin
Ding, Saisai
Li, Juncheng
Wang, Jun
Ying, Shihui
Shi, Jun
Source :
IEEE Transactions on Medical Imaging; 2024, Vol. 43 Issue: 3 p902-915, 14p
Publication Year :
2024

Abstract

Computer-aided diagnosis (CAD) can help pathologists improve diagnostic accuracy together with consistency and repeatability for cancers. However, the CAD models trained with the histopathological images only from a single center (hospital) generally suffer from the generalization problem due to the straining inconsistencies among different centers. In this work, we propose a pseudo-data based self-supervised federated learning (FL) framework, named SSL-FT-BT, to improve both the diagnostic accuracy and generalization of CAD models. Specifically, the pseudo histopathological images are generated from each center, which contain both inherent and specific properties corresponding to the real images in this center, but do not include the privacy information. These pseudo images are then shared in the central server for self-supervised learning (SSL) to pre-train the backbone of global mode. A multi-task SSL is then designed to effectively learn both the center-specific information and common inherent representation according to the data characteristics. Moreover, a novel Barlow Twins based FL (FL-BT) algorithm is proposed to improve the local training for the CAD models in each center by conducting model contrastive learning, which benefits the optimization of the global model in the FL procedure. The experimental results on four public histopathological image datasets indicate the effectiveness of the proposed SSL-FL-BT on both diagnostic accuracy and generalization.

Details

Language :
English
ISSN :
02780062 and 1558254X
Volume :
43
Issue :
3
Database :
Supplemental Index
Journal :
IEEE Transactions on Medical Imaging
Publication Type :
Periodical
Accession number :
ejs65706129
Full Text :
https://doi.org/10.1109/TMI.2023.3323540