Back to Search Start Over

Electrochemical synthesis in company with hydrogen production viarenewable energy: Opportunities and challenges

Authors :
Wei, Zidong
Huang, Xun
Duan, Haohong
Shao, Mingfei
Li, Rengui
Zhang, Jinli
Li, Can
Duan, Xue
Source :
Chinese Journal of Catalysis; March 2024, Vol. 58 Issue: 1 p1-6, 6p
Publication Year :
2024

Abstract

Organic electromechanical synthesis is an eco-friendly and efficient method for material synthesis, effectively addressing the high energy consumption and pollution problems in the traditional chemical industry. By combining hydrogen production from water electrolysis with organic electromechanical synthesis, the reactive oxygen/hydrogen from water hydrolysis can be utilized to oxidize/reduce organic compounds, reducing energy consumption and producing valuable organic products. However, this strategy still faces challenges when implemented in the industry. This paper addresses major technical challenges in the field, providing new insights for future advancements. Firstly, when selecting anode reactions for hydrogen production, it is important to consider the value and market demand of the oxidation product to match the production scale. Secondly, the development of efficient electrocatalysts and electrodes is required to enhance the oxidation kinetics and mass transfer of organics at the current density levels of industrial hydrogen production (500–2000 mA cm−2). Thirdly, it is essential to improve the selectivity and Faraday efficiency of the anode target product to lower the cost of subsequent separation and purification. Fourthly, existing anion and oxygen ion exchange membranes lack corrosion resistance to organic matter, and new separator materials with high ion conductivity and stability are crucial for the electrolytic coupling system. Finally, when combining organic oxidation and water electrolysis, the complexity of product separation increases, and it is recommended to integrate distillation, extraction, membrane separation, and electrochemical reactions to improve process efficiency.

Details

Language :
English
ISSN :
02539837 and 18722067
Volume :
58
Issue :
1
Database :
Supplemental Index
Journal :
Chinese Journal of Catalysis
Publication Type :
Periodical
Accession number :
ejs65833775
Full Text :
https://doi.org/10.1016/S1872-2067(23)64625-X