Back to Search Start Over

Zinc alleviates thermal stress-induced damage to the integrity and barrier function of cultured chicken embryonic primary jejunal epithelial cells via the MAPK and PI3K/AKT/mTOR signaling pathways

Authors :
Huang, Liang
Cao, Chunyu
Lin, Xuanxu
Lu, Lin
Lin, Xi
Liu, Hsiao-Ching
Odle, Jack
See, Miles Todd
Zhang, Liyang
Wu, Wei
Luo, Xugang
Liao, Xiudong
Source :
Poultry Science; 20240101, Issue: Preprints
Publication Year :
2024

Abstract

Zinc (Zn) could alleviate the adverse effect of high temperature (HT) on intestinal integrity and barrier function of broilers, but the underlying mechanisms remain unclear. We aimed to investigate the possible protective mechanisms of Zn on primary cultured broiler jejunal epithelial cells exposed to thermal stress (TS). In Exp.1, jejunal epithelial cells were exposed to 40℃ (normal temperature, NT) and 44℃ (HT) for 1, 2, 4, 6, or 8 h. Cells incubated for 8 h had the lowest transepithelial resistance (TEER) and the highest phenol red permeability under HT. In Exp.2, the cells were preincubated with different Zn sources (Zn sulfate as iZn and Zn proteinate with the moderate chelation strength as oZn) and Zn supplemental levels (50 and 100 µmol/L) under NT for 24 h, and then continuously incubated under HT for another 8 h. TS increased phenol red permeability, lactate dehydrogenase (LDH) activity and p-PKC/PKC level, and decreased TEER, cell proliferation, mRNA levels of claudin-1, occludin, zona occludens-1(ZO-1), PI3K, AKTand mTOR, protein levels of claudin-1, ZO-1 and junctional adhesion molecule-A (JAM-A), and the levels of p-ERK/ERK, p-PI3K/PI3K and p-AKT/AKT. Under HT, oZn was more effective than iZn in increasing TEER, occludin, ZO-1, PI3Kand AKTmRNA levels, ZO-1 protein level, and p-AKT/AKT level; supplementation with 50 μmol Zn/L was more effective than 100 μmol Zn/L in increasing cell proliferation, JAM-A, PI3K, AKTand PKCmRNA levels, JAM-A protein level, and the levels of p-ERK/ERK and p-PI3K/PI3K; furthermore, supplementation with 50 μmol Zn/L as oZn had the lowest LDH activity, and the highest ERK, JNK-1and mTORmRNA levels. Therefore, supplemental Zn, especially 50 μmol Zn/L as oZn, could alleviate the TS-induced integrity and barrier function damage of broiler jejunal epithelial cells possibly by promoting cell proliferation and tight junction protein expression via the MAPK and PI3K/AKT/mTOR signaling pathways.

Details

Language :
English
ISSN :
00325791 and 15253171
Issue :
Preprints
Database :
Supplemental Index
Journal :
Poultry Science
Publication Type :
Periodical
Accession number :
ejs65914143
Full Text :
https://doi.org/10.1016/j.psj.2024.103696