Back to Search Start Over

Engineering biomimetic nanosystem targeting multiple tumor radioresistance hallmarks for enhanced radiotherapy

Authors :
Wang, Shuxiang
Cao, Hongmei
Zhao, Cui-Cui
Wang, Qian
Wang, Dianyu
Liu, Jinjian
Yang, Lijun
Liu, Jianfeng
Source :
SCIENCE CHINA Life Sciences; 20240101, Issue: Preprints p1-15, 15p
Publication Year :
2024

Abstract

Tumor cells establish a robust self-defense system characterized by hypoxia, antioxidant overexpression, DNA damage repair, and so forth to resist radiotherapy. Targeting one of these features is insufficient to overcome radioresistance due to the feedback mechanisms initiated by tumor cells under radiotherapy. Therefore, we herein developed an engineering biomimetic nanosystem (M@HHPt) masked with tumor cell membranes and loaded with a hybridized protein-based nanoparticle carrying oxygens (O2) and cisplatin prodrugs (Pt(IV)) to target multiple tumor radioresistance hallmarks for enhanced radiotherapy. After administration, M@HHPt actively targeted and smoothly accumulated in tumor cells by virtue of its innate homing abilities to realize efficient co-delivery of O2and Pt(IV). O2introduction induced hypoxia alleviation cooperated with Pt(IV) reduction caused glutathione consumption greatly amplified radiotherapy-ignited cellular oxidative stress. Moreover, the released cisplatin effectively hindered DNA damage repair by crosslinking with radiotherapy-produced DNA fragments. Consequently, M@HHPt-sensitized radiotherapy significantly suppressed the proliferation of lung cancer H1975 cells with an extremely high sensitizer enhancement ratio of 1.91 and the progression of H1975 tumor models with an excellent tumor inhibition rate of 94.7%. Overall, this work provided a feasible strategy for tumor radiosensitization by overcoming multiple radioresistance mechanisms.

Details

Language :
English
ISSN :
16747305 and 18691889
Issue :
Preprints
Database :
Supplemental Index
Journal :
SCIENCE CHINA Life Sciences
Publication Type :
Periodical
Accession number :
ejs66058839
Full Text :
https://doi.org/10.1007/s11427-023-2528-5