Back to Search Start Over

Asymptotic Properties of <inline-formula><tex-math notation="LaTeX">$\mathcal {S}$</tex-math></inline-formula>-<inline-formula><tex-math notation="LaTeX">$\mathcal {AB}$</tex-math></inline-formula> Method With Diminishing Step-Size

Authors :
Zhao, Shengchao
Liu, Yongchao
Source :
IEEE Transactions on Automatic Control; 2024, Vol. 69 Issue: 5 p3222-3229, 8p
Publication Year :
2024

Abstract

The popular &lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mathcal {AB}$&lt;/tex-math&gt;&lt;/inline-formula&gt;/push–pull method for distributed optimization problem may unify much of the existing decentralized first-order methods based on gradient tracking technique. More recently, the stochastic gradient variant of &lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mathcal {AB}$&lt;/tex-math&gt;&lt;/inline-formula&gt;/push–pull method (&lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mathcal {S}$&lt;/tex-math&gt;&lt;/inline-formula&gt;-&lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mathcal {AB}$&lt;/tex-math&gt;&lt;/inline-formula&gt;) has been proposed, which achieves the linear rate of converging to a neighborhood of the global minimizer when the step-size is constant. This article is devoted to the asymptotic properties of &lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mathcal {S}$&lt;/tex-math&gt;&lt;/inline-formula&gt;-&lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mathcal {AB}$&lt;/tex-math&gt;&lt;/inline-formula&gt; with diminishing step-size. Specifically, under the condition that each local objective is smooth and the global objective is strongly convex, we first present the boundedness of the iterates of &lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mathcal {S}$&lt;/tex-math&gt;&lt;/inline-formula&gt;-&lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mathcal {AB}$&lt;/tex-math&gt;&lt;/inline-formula&gt; and then show that the iterates converge to the global minimizer with the rate &lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mathcal {O}(1/k)$&lt;/tex-math&gt;&lt;/inline-formula&gt; in the mean square sense. Furthermore, the asymptotic normality of Polyak–Ruppert averaged &lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mathcal {S}$&lt;/tex-math&gt;&lt;/inline-formula&gt;-&lt;inline-formula&gt;&lt;tex-math notation=&quot;LaTeX&quot;&gt;$\mathcal {AB}$&lt;/tex-math&gt;&lt;/inline-formula&gt; is obtained and applications on statistical inference are discussed. Finally, numerical tests are conducted to demonstrate the theoretic results.

Details

Language :
English
ISSN :
00189286 and 15582523
Volume :
69
Issue :
5
Database :
Supplemental Index
Journal :
IEEE Transactions on Automatic Control
Publication Type :
Periodical
Accession number :
ejs66237712
Full Text :
https://doi.org/10.1109/TAC.2023.3319155