Back to Search
Start Over
Michael-Simon type inequalities in hyperbolic space Hn+1${\mathbb{H}}^{n+1}$ via Brendle-Guan-Li’s flows
- Source :
- Advanced Nonlinear Studies; May 2024, Vol. 24 Issue: 3 p720-733, 14p
- Publication Year :
- 2024
-
Abstract
- In the present paper, we first establish and verify a new sharp hyperbolic version of the Michael-Simon inequality for mean curvatures in hyperbolic space Hn+1${\mathbb{H}}^{n+1}$ based on the locally constrained inverse curvature flow introduced by Brendle, Guan and Li (“An inverse curvature type hypersurface flow in Hn+1${\mathbb{H}}^{n+1}$ ,” (Preprint)) as follows(0.1)∫Mλ′f2E12+|∇Mf|2−∫M∇̄fλ′,ν+∫∂Mf≥ωn1n∫Mfnn−1n−1n$$\underset{M}{\int }{\lambda }^{\prime }\sqrt{{f}^{2}{E}_{1}^{2}+\vert {\nabla }^{M}f{\vert }^{2}}-\underset{M}{\int }\langle \bar{\nabla }\left(f{\lambda }^{\prime }\right),\nu \rangle +\underset{\partial M}{\int }f\ge {\omega }_{n}^{\frac{1}{n}}{\left(\underset{M}{\int }{f}^{\frac{n}{n-1}}\right)}^{\frac{n-1}{n}}$$ provided that Mis h-convex and fis a positive smooth function, where λ′(r) = coshr. In particular, when fis of constant, (0.1)coincides with the Minkowski type inequality stated by Brendle, Hung, and Wang in (“A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold,” Commun. Pure Appl. Math., vol. 69, no. 1, pp. 124–144, 2016). Further, we also establish and confirm a new sharp Michael-Simon inequality for the kth mean curvatures in Hn+1${\mathbb{H}}^{n+1}$ by virtue of the Brendle-Guan-Li’s flow (“An inverse curvature type hypersurface flow in Hn+1${\mathbb{H}}^{n+1}$ ,” (Preprint)) as below(0.2)∫Mλ′f2Ek2+|∇Mf|2Ek−12−∫M∇̄fλ′,ν⋅Ek−1+∫∂Mf⋅Ek−1≥pk◦q1−1(W1(Ω))1n−k+1∫Mfn−k+1n−k⋅Ek−1n−kn−k+1\begin{align}\hfill & \underset{M}{\int }{\lambda }^{\prime }\sqrt{{f}^{2}{E}_{k}^{2}+\vert {\nabla }^{M}f{\vert }^{2}{E}_{k-1}^{2}}-\underset{M}{\int }\langle \bar{\nabla }\left(f{\lambda }^{\prime }\right),\nu \rangle \cdot {E}_{k-1}+\underset{\partial M}{\int }f\cdot {E}_{k-1}\hfill \\ \hfill & \quad \ge {\left({p}_{k}{\circ}{q}_{1}^{-1}\left({W}_{1}\left({\Omega}\right)\right)\right)}^{\frac{1}{n-k+1}}{\left(\underset{M}{\int }{f}^{\frac{n-k+1}{n-k}}\cdot {E}_{k-1}\right)}^{\frac{n-k}{n-k+1}}\hfill \end{align} provided that Mis h-convex and Ω is the domain enclosed by M, pk(r) = ωn(λ′)k−1, W1(Ω)=1n|M|${W}_{1}\left({\Omega}\right)=\frac{1}{n}\vert M\vert $ , λ′(r) = coshr, q1(r)=W1Srn+1${q}_{1}\left(r\right)={W}_{1}\left({S}_{r}^{n+1}\right)$ , the area for a geodesic sphere of radius r, and q1−1${q}_{1}^{-1}$ is the inverse function of q1. In particular, when fis of constant and kis odd, (0.2)is exactly the weighted Alexandrov–Fenchel inequalities proven by Hu, Li, and Wei in (“Locally constrained curvature flows and geometric inequalities in hyperbolic space,” Math. Ann., vol. 382, nos. 3–4, pp. 1425–1474, 2022).
Details
- Language :
- English
- ISSN :
- 15361365 and 21690375
- Volume :
- 24
- Issue :
- 3
- Database :
- Supplemental Index
- Journal :
- Advanced Nonlinear Studies
- Publication Type :
- Periodical
- Accession number :
- ejs66420276
- Full Text :
- https://doi.org/10.1515/ans-2023-0127