Back to Search Start Over

Predicting doping strategies for ternary nickel–cobalt–manganese cathode materials to enhance battery performance using graph neural networks

Authors :
Zhao, Zirui
Luo, Dong
Wu, Shuxing
Sun, Kaitong
Lin, Zhan
Li, Hai-Feng
Source :
Jouranl of Energy Storage; September 2024, Vol. 98 Issue: 1
Publication Year :
2024

Abstract

The exceptional electrochemical performance of lithium-ion batteries has spurred considerable interest in advanced battery technologies, particularly those utilizing ternary nickel–cobalt–manganese (NCM) cathode materials, which are renowned for their robust electrochemical performance and structural stability. Building upon this research, investigators have explored doping additional elements into NCM cathode materials to further enhance their electrochemical performance and structural integrity. However, the multitude of doping strategies available for NCM battery systems presents a challenge in determining the most effective approach. In this study, we elucidate the potential of ternary NCM systems as cathode materials for lithium-ion batteries. We compile a comprehensive database of lithium-ion batteries employing NCM systems from various sources of prior research and develop a corresponding data-driven model utilizing graph neural networks to predict optimal doping strategies. Our aim is to provide insights into the NCM-based battery systems for both fundamental understanding and practical applications.

Details

Language :
English
ISSN :
2352152x
Volume :
98
Issue :
1
Database :
Supplemental Index
Journal :
Jouranl of Energy Storage
Publication Type :
Periodical
Accession number :
ejs66929231
Full Text :
https://doi.org/10.1016/j.est.2024.112982