Back to Search
Start Over
On the Factors Controlling the Relationship Between Type of Pulsating Aurora and Energy of Pulsating Auroral Electrons: Simultaneous Observations by Arase Satellite, Ground‐Based All‐Sky Imagers and EISCAT Radar
- Source :
- Journal of Geophysical Research - Space Physics; July 2024, Vol. 129 Issue: 7
- Publication Year :
- 2024
-
Abstract
- Pulsating Aurora (PsA) is one of the major classes of diffuse aurora associated with precipitation of a few to a few tens of keV electrons from the magnetosphere. Recent studies suggested that, during PsA, more energetic (i.e., sub‐relativistic/relativistic) electrons precipitate into the ionosphere at the same time. Those electrons are considered to be scattered at the higher latitude part of the magnetosphere by whistler‐mode chorus waves propagating away from the magnetic equator. However, there have been no actual cases of simultaneous observations of precipitating electrons causing PsA (PsA electrons) and chorus waves propagating toward higher latitudes; thus, we still do not quite well understand under what conditions PsA electrons become harder and precipitate to lower altitudes. To address this question, we have investigated an extended interval of PsA on 12 January 2021, during which simultaneous observations with the Arase satellite, ground‐based all‐sky imagers and the European Incoherent SCATter (EISCAT) radar were conducted. We found that, when the PsA shape became patchy, the PsA electron energy increased and Arase detected intense chorus waves at magnetic latitudes above 20°, indicating the propagation of chorus waves up to higher latitudes along the field line. A direct comparison between the irregularities of the magnetospheric electron density and the emission intensity of PsA patches at the footprint of the satellite suggests that the PsA morphology and the energy of PsA electrons are determined by the presence of “magnetospheric density ducts,” which allow chorus waves to travel to higher latitudes and thereby precipitate more energetic electrons. Pulsating Aurora (PsA) is a kind of diffuse aurora associated with periodic precipitation of energetic electrons from the near‐Earth space into the atmosphere. Recent research has shown that, during PsA events, energetic particles at the sub‐relativistic energy range precipitate into the atmosphere. We speculate that such particles are scattered by wave‐particle resonance with natural electromagnetic waves, called chorus waves, at higher magnetic latitude regions. However, there has been no experimental case of PsA during which propagation of the chorus waves to higher magnetic latitudes was confirmed; thus, we still do not fully understand when and why PsA electrons become more energetic. Here, we investigate a PsA event on 12 January 2021, simultaneously observed by the Arase satellite, ground‐based all‐sky imagers and the European Incoherent SCATter (EISCAT) radar. We found that, when the PsA shape was patchy, the energy of precipitating electrons increased and chorus waves were observed at high latitudes in the magnetosphere. Comparing the magnetospheric electron density with the PsA brightness seen from the ground, we suggest that both the PsA shape and the energy of precipitating electrons were influenced by the so‐called magnetospheric ducts, which guide chorus waves to high‐latitudes regions where they interact with more energetic electrons. Examined simultaneous observations of Pulsating Aurora (PsA) with the Arase satellite, ground‐based all‐sky imagers, and the EISCAT radarFound a relationship among the patchy PsA, the enhanced energy of PsA electrons, and the chorus wave propagation to high‐latitudes (>20°)Arase observations suggest that the observed relationship can be explained by the ducted propagation of chorus waves Examined simultaneous observations of Pulsating Aurora (PsA) with the Arase satellite, ground‐based all‐sky imagers, and the EISCAT radar Found a relationship among the patchy PsA, the enhanced energy of PsA electrons, and the chorus wave propagation to high‐latitudes (>20°) Arase observations suggest that the observed relationship can be explained by the ducted propagation of chorus waves
Details
- Language :
- English
- ISSN :
- 21699380 and 21699402
- Volume :
- 129
- Issue :
- 7
- Database :
- Supplemental Index
- Journal :
- Journal of Geophysical Research - Space Physics
- Publication Type :
- Periodical
- Accession number :
- ejs67003062
- Full Text :
- https://doi.org/10.1029/2024JA032617