Back to Search Start Over

An Optimal Unsupervised Domain Adaptation Approach With Applications to Pipeline Fault Diagnosis: Balancing Invariance and Variance

Authors :
Wang, Chuang
Wang, Zidong
Liu, Hongjian
Dong, Hongli
Lu, Guoping
Source :
IEEE Transactions on Industrial Informatics; August 2024, Vol. 20 Issue: 8 p10019-10030, 12p
Publication Year :
2024

Abstract

A practical yet challenging scenario in transfer learning is unsupervised domain adaptation (UDA), where knowledge is transferred from a labeled source domain to unlabeled target domains. The crucially important role of domain-variant characteristics is often neglected by most existing UDA methods, which can deteriorate adaptation performance and result in negative transfer. In this article, an optimal unsupervised domain adaptation (OUDA) algorithm is proposed in order to address this issue, which balances the invariance of domain-sharing features and the variance of domain-specific features. In the proposed approach, a gradient adversarial adaptation (GAA) method is introduced to align the gradient directions of source and target features within the same category, thereby facilitating knowledge transfer. In addition, a local manifold embedding (LME) technique is proposed to preserve the intrinsic geometric structure of the original feature space while implementing distribution alignment, providing distinguishable features for UDA. To stabilize the process of knowledge transfer, an evolutionary control strategy is developed to adaptively control the tradeoff between the GAA and LME by employing the particle swarm optimization algorithm. Extensive experiments are conducted on cross-domain natural gas pipeline fault diagnosis, and the results on nine cross-domain classification tasks indicate that our OUDA algorithm outperforms the existing state-of-the-art UDA methods. Moreover, the performance analysis in terms of accuracy, loss, and domain divergence demonstrates the superior stability of the proposed OUDA algorithm in dealing with unsupervised knowledge transfer.

Details

Language :
English
ISSN :
15513203
Volume :
20
Issue :
8
Database :
Supplemental Index
Journal :
IEEE Transactions on Industrial Informatics
Publication Type :
Periodical
Accession number :
ejs67112302
Full Text :
https://doi.org/10.1109/TII.2024.3385533