Back to Search Start Over

Non-Orthogonal Age-Optimal Information Dissemination in Vehicular Networks: A Meta Multi-Objective Reinforcement Learning Approach

Authors :
Al-Habob, Ahmed A.
Tabassum, Hina
Waqar, Omer
Source :
IEEE Transactions on Mobile Computing; October 2024, Vol. 23 Issue: 10 p9789-9803, 15p
Publication Year :
2024

Abstract

This article considers minimizing the age-of-information (AoI) and transmit power consumption in a vehicular network, where a roadside unit (RSU) provides timely updates about a set of physical processes to vehicles. We consider non-orthogonal multi-modal information dissemination, which is based on superposed message transmission from RSU and successive interference cancellation (SIC) at vehicles. The formulated problem is a multi-objective mixed-integer nonlinear programming problem; thus, a Pareto-optimal front is very challenging to obtain. First, we leverage the weighted-sum approach to decompose the multi-objective problem into a set of multiple single-objective sub-problems corresponding to each predefined objective preference weight. Then, we develop a hybrid deep Q-network (DQN)-deep deterministic policy gradient (DDPG) model to solve each optimization sub-problem respective to predefined objective-preference weight. The DQN optimizes the decoding order, while the DDPG solves the continuous power allocation. The model needs to be retrained for each sub-problem. We then present a two-stage meta-multi-objective reinforcement learning solution to estimate the Pareto front with a few fine-tuning update steps without retraining the model for each sub-problem. Simulation results illustrate the efficacy of the proposed solutions compared to the existing benchmarks and that the meta-multi-objective reinforcement learning model estimates a high-quality Pareto frontier with reduced training time.

Details

Language :
English
ISSN :
15361233
Volume :
23
Issue :
10
Database :
Supplemental Index
Journal :
IEEE Transactions on Mobile Computing
Publication Type :
Periodical
Accession number :
ejs67329003
Full Text :
https://doi.org/10.1109/TMC.2024.3367166