Back to Search
Start Over
Synthesis and purification of nano-sized titanium carbide particles through vacuum carbothermal reduction for enhanced mechanical, microstructural morphology, and tribological properties in friction stir processed A356-based aluminum composites
- Source :
- Journal of Materials Research and Technology; November-December 2024, Vol. 33 Issue: 1 p5874-5887, 14p
- Publication Year :
- 2024
-
Abstract
- This study focused on the synthesis and purification of nano-sized titanium carbide (TiC) particles through vacuum carbothermal reduction under a hydrogen/argon atmosphere. The process involved the production of carbon-coated titanium precursors, followed by heating under vacuum conditions at 1500 °C for 2.5 h. The resulting products underwent additional treatment in either a hydrogen/argon (1:1) mixed gas or pure hydrogen gas. Experimental findings revealed that TiC powders exhibiting a single phase are obtained within a molar ratio of Ti to C ranging from 1:2 to 1:4. Adjusting the molar ratio of Ti/C in the precursors allowed for controlled variation in the particle size of the synthesized TiC powders, ranging from 50 to 80 nm. Treatment in hydrogen/argon mixed gas at 850 °C for 3 h resulted in TiC products with an impressive purity of 99.40%. The subsequent incorporation of 5% Nano-TiC-3 (Ti to C ranging from 1:3) as reinforcement into an aluminum alloy by Friction stir process technique demonstrated a remarkable 19.41% improvement in tensile strength, highlighting the efficacy of this specific reinforcement. The nano-TiC-3 reinforced composite exhibited uniform distribution without porosity. Additionally, a notable 50.81% improvement in hardness and the best wear resistance were observed for the 5% Nano-TiC-3 reinforced aluminum composite. This comprehensive study contributes valuable insights into the synthesis, purification, and application of nano-sized TiC particles, paving the way for the development of high-performance aluminum-based composites with enhanced mechanical and tribological properties.
Details
- Language :
- English
- ISSN :
- 22387854
- Volume :
- 33
- Issue :
- 1
- Database :
- Supplemental Index
- Journal :
- Journal of Materials Research and Technology
- Publication Type :
- Periodical
- Accession number :
- ejs67815378
- Full Text :
- https://doi.org/10.1016/j.jmrt.2024.10.199