Back to Search
Start Over
Functions of the sigma(54) region I in trans and implications for transcription activation.
- Source :
- Journal of Biological Chemistry; September 1999, Vol. 274 Issue: 36 p25285-90, 6p
- Publication Year :
- 1999
-
Abstract
- Control of transcription frequently involves the direct interaction of activators with RNA polymerase. In bacteria, the formation of stable open promoter complexes by the sigma(54) RNA polymerase is critically dependent on sigma(54) amino Region I sequences. Their presence correlates with activator dependence, and removal allows the holoenzyme to engage productively with melted DNA independently of the activator. Using purified Region I sequences and holoenzymes containing full-length or Region I-deleted sigma(54), we have explored the involvement of Region I in transcription activation. Results show that Region I in trans inhibits a reversible conformational change in the holoenzyme believed to be polymerase isomerization. Evidence is presented indicating that the holoenzyme (and not the promoter DNA per se) is one interacting target used by Region I in preventing polymerase isomerization. Activator overcomes this inhibition in a reaction requiring nucleotide hydrolysis. Region I in trans is able to inhibit activated transcription by the holoenzyme containing full-length sigma(54). Inhibition appeared to be noncompetitive with respect to the activator, suggesting that a direct activator interaction occurs with parts of the holoenzyme outside Region I. Stabilization of isomerized holoenzyme bound to melted DNA by Region I in trans occurs largely independently of the initiating nucleotide, suggesting a role for Region I in maintaining the open complex.
Details
- Language :
- English
- ISSN :
- 00219258 and 1083351X
- Volume :
- 274
- Issue :
- 36
- Database :
- Supplemental Index
- Journal :
- Journal of Biological Chemistry
- Publication Type :
- Periodical
- Accession number :
- ejs7252471