Back to Search Start Over

A dominant mutant of occludin disrupts tight junction structure and function.

Authors :
Bamforth, S D
Kniesel, U
Wolburg, H
Engelhardt, B
Risau, W
Source :
Journal of Cell Science; June 1999, Vol. 112 Issue: 12 p1879-88, 10p
Publication Year :
1999

Abstract

The tight junction is the most apical intercellular junction of epithelial cells and forms a diffusion barrier between individual cells. Occludin is an integral membrane protein specifically associated with the tight junction which may contribute to the function or regulation of this intercellular seal. In order to elucidate the role of occludin at the tight junction, a full length and an N-terminally truncated murine occludin construct, both FLAG-tagged at the N terminus, were stably introduced into the murine epithelial cell line CSG 120/7. Both constructs were correctly targeted to the tight junction, as defined by colocalization with another tight junction protein, ZO-1. The construct lacking the N terminus and extracellular domains of occludin was found to exert a dramatic effect on tight junction integrity. Cell monolayers failed to develop an efficient permeability barrier, as demonstrated by low transcellular electrical resistance values and an increased paracellular flux to small molecular mass tracers. Furthermore, gaps were found to have been induced in the P-face associated tight junction strands, as visualized by freeze-fracture electron microscopy. These findings demonstrate an important role for the N-terminal half of occludin in tight junction assembly and maintaining the barrier function of the tight junction.

Details

Language :
English
ISSN :
00219533 and 14779137
Volume :
112
Issue :
12
Database :
Supplemental Index
Journal :
Journal of Cell Science
Publication Type :
Periodical
Accession number :
ejs7797909