Back to Search Start Over

Fuel and Technology Alternatives for Buses:Overall Energy Efficiency and Emission Performance

Authors :
Nylund, Nils-Olof
Koponen, Kati
Source :
Nylund, N-O & Koponen, K 2012, Fuel and Technology Alternatives for Buses : Overall Energy Efficiency and Emission Performance . VTT Technology, no. 46, VTT Technical Research Centre of Finland, Espoo . < https://publications.vtt.fi/pdf/technology/2012/T46.pdf >
Publication Year :
2012
Publisher :
VTT Technical Research Centre of Finland, 2012.

Abstract

In 2009-2011, a comprehensive project on urban buses was carried out in cooperation with IEA&#39;s Implementing Agreements on Alternative Motor Fuels and Bioenergy, with input from additional IEA Implementing Agreements. The objective of the project was to generate unbiased and solid data for use by policy- and decision-makers responsible for public transport using buses. The project comprised four major parts: (1) a well-to-tank (WTT) assessment of alternative fuel pathways, (2) an assessment of bus end-use (tank-to-wheel, TTW) performance, (3) combining WTT and TTW data into well-to-wheel (WTW) data and (4) a cost assessment, including indirect as well as direct costs. Experts at Argonne National Laboratory, Natural Resources Canada and VTT worked on the WTT part. In the TTW part, Environment Canada and VTT generated emission and fuel consumption data by running 21 different buses on chassis dynamometers, generating data for some 180 combinations of vehicle, fuel and driving cycle. The fuels covered included diesel, synthetic diesel, various types of biodiesel fuels, additive treated ethanol, methane and DME. Six different hybrid vehicles were included in the vehicle matrix. The TTW work was topped up by on-road measurements (AVL MTC) as well as some engine dynamometer work (von Th&#252;nen Institute). Over the last 15 years, tightening emission regulations and improved engine and exhaust after-treatment technology have reduced regulated emissions by a factor of 10:1 and particulate numbers with a factor of 100:1. Hybridization or light-weighting reduce fuel consumption 20-30%, but otherwise the improvements in fuel efficiency have not been that spectacular. The driving cycle affects regulated emissions and fuel consumption by a factor of 5:1. The fuel effects are at maximum 2.5:1 for regulated emissions (particulates), but as high as 100:1 for WTW greenhouse emissions. WTW energy use varies by a factor on 2.5:1.

Details

Language :
English
Database :
OpenAIRE
Journal :
Nylund, N-O &amp; Koponen, K 2012, Fuel and Technology Alternatives for Buses : Overall Energy Efficiency and Emission Performance . VTT Technology, no. 46, VTT Technical Research Centre of Finland, Espoo . < https://publications.vtt.fi/pdf/technology/2012/T46.pdf >
Accession number :
edsair.355e65625b88..83f8010c6f56545ef7c4ed578823b1d9