Back to Search Start Over

Parameterized minimum eddy diffusivity in WRF-Chem(v3.9.1.1) for improving PM2.5 simulation in the stable boundary layer over eastern China

Authors :
Lu, Wen
Zhu, Bin
Yan, Shuqi
Li, Jie
Wang, Zifa
Source :
eISSN
Publication Year :
2023

Abstract

Weak turbulence often occurs during heavy pollution events in eastern China. However, existing mesoscale models cannot accurately simulate turbulent diffusion under weakened turbulence, particularly under the nocturnal stable boundary layer (SBL), often leading to significant turbulent diffusivity underestimation and surface aerosol simulation overestimation. In this study, based on the Weather Research and Forecasting model coupled with the Chemistry model (WRF-Chem 3.9.1), a new parameterization of minimum turbulent diffusivity (Kzmin) is tested and applied in PM2.5 simulations in eastern China under SBL conditions. Sensitivity experiments show that there are different value ranges of available Kzmin over the northern (0.8 to 1.3 m2·s-1) and southern (1.0 to 1.5 m2·s-1) regions of East China. The geographically related Kzmin could be parameterized by means of two factors: sensible heat flux (H) and latent heat flux (LE), which also exhibited a regional difference related to the climate and underlying surface. The revised Kzmin scheme obviously enhanced the turbulent diffusion (north: 0.88 m2·s-1, south: 1.17 m2·s-1 on average) under the SBL, simultaneously improving the PM2.5 simulations, with the PM2.5 relative bias decreasing from 43.0 % to 15.6 % on the surface. The improvement in the mean bias of the surface simulation was more noticeable in the north (54.01 to 3.79 ug·m-3) than in the south (37.05 to 17.99 ug·m-3). It also increased the PM2.5 concentration in the upper SBL. Furthermore, we discussed the physical relationship between Kzmin and two factors. Kzmin was inversely correlated with sensible heat flux (negative) and latent heat flux (positive) in the SBL. Process analysis showed that vertical mixing is the key process to improve PM2.5 simulations on the surface in the revised scheme. The increase in the PM2.5 concentration in the upper SBL was attributed to vertical mixing, advection, and aerosol chemistry. This study highlights the importance of improving turbulent diffusion in current mesoscale models under the SBL and has great significance for aerosol simulation research under heavy air pollution events.

Details

Language :
English
Database :
OpenAIRE
Journal :
eISSN
Accession number :
edsair.copernicuspu..b78c7a79cc1f923e3bfda62091d98ae8