Back to Search
Start Over
Atmospheric photooxidation and ozonolysis of Δ3-carene and 3-caronaldehyde: Rate constants and product yields
Atmospheric photooxidation and ozonolysis of Δ3-carene and 3-caronaldehyde: Rate constants and product yields
- Publication Year :
- 2021
-
Abstract
- The oxidation of Δ3-carene and one of its main oxidation products, caronaldehyde, by the OH radical and O3 was investigated in the atmospheric simulation chamber SAPHIR under atmospheric conditions for NOx mixing ratios below 2 ppbv. Within this study, the rate constants of the reaction of Δ3-carene with OH and O3, and of the reaction of caronaldehyde with OH were determined to be (8.0 ± 0.5) × 10−11 cm3 s−1 at 304 K, (4.4 ± 0.2) × 10−17 cm3 s−1 at 300 K and (4.6 ± 1.6) × 10−11 cm3 s−1 at 300 K, respectively, in agreement with previously published values. The yields of caronaldehyde from the reaction of OH and ozone with Δ3-carene were determined to be (0.30 ± 0.05) and (0.06 ± 0.02), respectively. Both values are in reasonably well agreement with reported literature values. An organic nitrate (RONO2) yield from the reaction of NO with RO2 derived from Δ3-carene of (0.25 ± 0.04) was determined from the analysis of the reactive nitrogen species (NOy) in the SAPHIR chamber. The RONO2 yield of the reaction of NO with RO2 derived from the reaction of caronaldehyde with OH was found to be (0.10 ± 0.02). The organic nitrate yields of Δ3-carene and caronaldehyde oxidation with OH are reported here for the first time in the gas phase. An OH yield of (0.65 ± 0.10) was determined from the ozonolysis of Δ3-carene. Calculations of production and destruction rates of the sum of hydroxyl and peroxy radicals (ROx = OH+HO2+RO2) demonstrated that there were no unaccounted production or loss processes of radicals in the oxidation of Δ3-carene for conditions of the the chamber experiments. In an OH free experiment with added OH scavenger, the photolysis frequency of caronaldehyde was obtained from its photolytical decay. The experimental photolysis frequency was a factor of 7 higher than the value calculated from the measured solar acintic flux density, an absorption cross section from the literature and an assumed effective quantum yield of unity for photodissociation.
Details
- Language :
- English
- ISSN :
- 16807324
- Database :
- OpenAIRE
- Accession number :
- edsair.copernicuspu..dfee83a06072a152db0ed6e657993d14