Back to Search Start Over

Isotope production in proton-, deuteron-, and carbon-induced reactions on Nb 93 at 113 MeV/nucleon

Authors :
Nakano, Keita
Watanabe, Yukinobu
Kawase, Shoichiro
Wang, He
Otsu, Hideaki
Sakurai, Hiroyoshi
Takeuchi, Satoshi
Togano, Yasuhiro
Nakamura, Takashi
Maeda, Yukie
Ahn, Deuk Soon
Aikawa, Masayuki
Araki, Shouhei
Chen, Sidong
Chiga, Nobuyuki
Doornenbal, Pieter
Fukuda, Naoki
Ichihara, Takashi
Isobe, Tadaaki
Kawakami, Shunsuke
Kin, Tadahiro
Kondo, Yosuke
Koyama, Shunpei
Kubo, Toshiyuki
Kubono, Shigeru
Uesaka, Meiko
Makinaga, Ayano
Matsushita, Masafumi
Matsuzaki, Teiichiro
Michimasa, Shin'ichiro
Momiyama, Satoru
Nagamine, Shunsuke
Niikura, Megumi
Ozaki, Tomoyuki
Saito, Atsumi
Saito, Takeshi
Shiga, Yoshiaki
Shikata, Mizuki
Shimizu, Yohei
Shimoura, Susumu
Sumikama, Toshiyuki
Söderström, Pär Anders
Suzuki, Hiroshi
Takeda, Hiroyuki
Taniuchi, Ryo
Tsubota, Jun'ichi
Watanabe, Yasushi
Wimmer, Kathrin
Yamamoto, Tatsuya
Yoshida, Koichi
Publication Year :
2019

Abstract

Isotope-production cross sections for p-, d-, and C-induced spallation reactions on Nb93 at 113 MeV/nucleon were measured using the inverse-kinematics method employing secondary targets of CH2, CD2, and C. The measured cross sections for Mo90, Nb90, Y86,88 produced by p-induced reactions were found to be consistent with those measured by the conventional activation method. We performed benchmark tests of the reaction models INCL-4.6, JQMD, and JQMD-2.0 implemented in the Particle and Heavy Ion Transport code System (PHITS) and of the nuclear data libraries JENDL-4.0/HE, TENDL-2017, and ENDF/B-VIII.0. The model calculations also showed generally good agreement with the measured isotope-production cross sections for p-, d-, and C-induced reactions. It also turns out that, among the three nuclear data libraries, JENDL-4.0/HE provides the best agreement with the measured data for the p-induced reactions. We compared the present Nb93 data with the Zr93 data, that were measured previously by the same inverse kinematics method (Kawase et al., Prog. Theor. Exp. Phys. 2017, 093D03 (2017)2050-391110.1093/ptep/ptx110), with particular attention to the effect of neutron-shell closure on isotope production in p- and d-induced spallation reactions. The isotopic distributions of the measured production cross sections in the Zr93 data showed noticeable jumps at neutron number N=50 in the isotopic chains of ΔZ=0 and -1, whereas no such jump appeared in isotopic chain of ΔZ=0 in the Nb93 data. From INCL-4.6 + GEM calculations, we found that the jump formed in the evaporation process is smeared out by the intranuclear cascade component in Nb91 produced by the Nb93(p,p2n) and (d,d2n) reactions on Nb93. Moreover, for Nb93, the distribution of the element-production cross sections as a function of the change in proton number ΔZ is shifted to smaller ΔZ than for Zr93, because the excited Nb prefragments generated by the cascade process are more likely to emit protons than the excited Zr prefragments, due to the smaller proton-separation energies of the Nb isotopes.

Details

Language :
English
ISSN :
20503911 and 24699993
Database :
OpenAIRE
Accession number :
edsair.core.ac.uk....7e8fbafec8600fea17e410f39b9d2a99