Back to Search Start Over

Entropically-controlled self-assembly of polymer membranes at immiscible liquid interfaces

Authors :
Dupré De Baubigny, J
Perrin, P.
Pantoustier, N.
Salez, Thomas
Reyssat, M.
Monteux, C.
Sciences et Ingénierie de la Matière Molle (SIMM)
Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Ondes et Matière d'Aquitaine (LOMA)
Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)
Gulliver
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Self-assembly of polymers at liquid interfaces is an emerging technique to produce all-liquid printable and self-healing devices and membranes. It is crucial to control the assembly process but the mechanisms at play remain unclear. Using two different reflectometric methods, we investigate the spontaneous growth of H-bonded PPO-PMAA membranes at a flat liquid-liquid interface. We find that the membrane thickness h grows with time t as h~t^(1/2), which is reminiscent of a diffusion-limited process. However, counter-intuitively, we observe that this process is faster as the PPO molar mass increases. We are able to rationalize these results with a model which considers the diffusion of the PPO chains within the growing membrane. The architecture of the latter is described as a gel-like porous network, with a pore size much smaller than the radius of the diffusing PPO chains, thus inducing entropic barriers that hinder the diffusion process. From the comparison between the experimental data and the result of the model, we extract some key piece of information about the microscopic structure of the membrane. This study opens the route toward the rational design of self-assembled membranes and capsules with optimal properties.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..00308a1fcdbeecabf1bc671b0a7c2f69