Back to Search Start Over

Simulation of the déformations of abdominal organs : application to the liver and its vascularisation déformations in regard of real time reconstitution during mini-invasive surgery

Authors :
Kugler, Michaël
Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube)
École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE)
Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
Université de Strasbourg
Daniel George
Yves Rémond
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Mécanique des matériaux [physics.class-ph]. Université de Strasbourg, 2018. Français. ⟨NNT : 2018STRAD018⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

Numerical models used for surgical application require simultaneously a precision close to the millimeter, high speed resolution and to account for the patient variabilities. In the present study, we develop a numerical model of the liver, which relies on hyper-elastic mechanical behavior completed with the vascularization impact on the macroscopic level. Once completed and implemented, the model is treated with model reduction and learning tools in order to provide a real-time response. Mechanical properties are extracted from numerical indentations and homogeneised to build a model accounting for the impact of the vascularization. Once validated on a real sample, simulated deformations are used as input to a learning solution to build a functional solution. Finally, the function is integrated in a surgical tool, to provide a quick and precise representation of the liver deformations.; Les modèles numériques présents dans les salles de chirurgie requièrent simultanément une précision millimétrique, une vitesse de résolution importante, tout en prenant en compte la variabilité inter-patient. Dans l’étude proposée, nous développons un modèle numérique du foie, intégrant des lois de comportement hyper-élastiques ainsi que l’impact mécanique de la vascularisation. Une fois constitué, le modèle est traité par des outils mathématiques de réduction de modèles et d’apprentissage afin de fournir une réponse en temps réel. Pour cela, des données mécaniques sont extraites d’indentations numériques puis homogénéisées, pour construire un modèle numérique intégrant l’impact de la vascularisation. Une fois validé sur un échantillon réel les déformations simulées sont utilisées par une méthode d’apprentissage pour construire une réponse fonctionnelle. Une fois intégrée dans un outil chirurgical, ce dernier permet de fournir une réponse en temps réel des déformations du foie.

Details

Language :
French
Database :
OpenAIRE
Journal :
Mécanique des matériaux [physics.class-ph]. Université de Strasbourg, 2018. Français. ⟨NNT : 2018STRAD018⟩
Accession number :
edsair.dedup.wf.001..0584f0215e5be9c9393f9015bf5e72a1