Back to Search Start Over

Exploring protozoal function and their greater metabolic influence in the rumen microbiome using (meta)genome-resolved metaproteomics

Authors :
Thea Os, ANDERSEN
Popova, Milka
Hagen, Live Heldal
Arntzen, Magnus
Pope, Philippe B.
Norwegian University of Life Sciences (NMBU)
Norwegian University of Sciences (Department of Animal and Aquacultural Sciences)
Unité Mixte de Recherche sur les Herbivores - UMR 1213 (UMRH)
VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
INRAE
Rowett Institute UK
Source :
12. International Symposium on Gut Microbiology, 12. International Symposium on Gut Microbiology, INRAE ; Rowett Institute UK, Oct 2021, En ligne, France
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; The rumen constitutes a specialized ecosystem composed of a dense and complex mixture of anaerobic bacteria, archaea, protozoa, fungi and phages, that interact closely in the degradation and fermentation of complex plant material into volatile fatty acids (VFAs), utilized for host energy metabolism, and methane gas. The metabolic functions carried out by the rumen microbiome are of scientific and industrial interest, as it contributes to feed efficiency and production of an important human food source (meat and dairy), but additionally contributes significantly to global methane emissions. Therefore, extensive efforts are needed to mitigate enteric methane emissions from ruminant animals without compromising livestock production. While the protozoal populations in the rumen microbiome can comprise up to 50% of the microbial biomass, their biological and metabolic features remain largely unsettled. Advances in culture-independent “meta-omics” approaches continue to increase our understanding of microbiomes, and by integrating multiple culture-independent meta-omics techniques, we can obtain a detailed real-time and in situ molecular portrait of which organisms occupy specific metabolic niches. By resolving (meta)genome-centric metaproteome datasets from rumen fluid samples originating from dairy cows and goats fed diets supplemented with different lipid sources, we explore protozoal function in the rumen microbiome. We specifically leveraged these data to investigate their active metabolic genes and pathways that are responsible for polysaccharide digestion, generation of hydrogen and production of VFAs. Our results illustrate the significant metabolic influence these under-explored eukaryotic populations have in the rumen, towards both fiber and hydrogen metabolism.

Details

Language :
English
Database :
OpenAIRE
Journal :
12. International Symposium on Gut Microbiology, 12. International Symposium on Gut Microbiology, INRAE ; Rowett Institute UK, Oct 2021, En ligne, France
Accession number :
edsair.dedup.wf.001..097d723d72429ae552a3211e9454dbae