Back to Search Start Over

Mesure de pressions partielles de gaz par diffusion Raman spontanée - Application à la gestion du risque hydrogène en situation d'accident nucléaire grave

Authors :
Magne, Sylvain
Nehr, Simon
Buet, Xavier
Studer, Etienne
Scarpa, Roberta
Abdo, Daniele
Widloecher, Jean-Luc
Norvez, Olivier
Porcheron, Emmanuel
Bentaïb, Ahmed
Grosseuvres, Romain
CHAUMEIX, Nabiha
Dhote, Julien
Freyssinier, Mathilde
Ruffien-Ciszak, Audrey
Laboratoire Capteurs Fibres Optiques (LCFO)
Département Métrologie Instrumentation & Information (DM2I)
Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Laboratoire Capteurs et Architectures Electroniques (LCAE)
Service Fluide numériques, Modélisation et Etudes (SFME)
Département de Modélisation des Systèmes et Structures (DM2S)
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Institut de Radioprotection et de Sûreté Nucléaire (IRSN)
Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE)
Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences de l'Ingénierie et des Systèmes (INSIS - CNRS)
ARCYS
Étude menée dans le cadre du projet MITHYGENE (ANR-11-RSNR-0015), financé par le Programme Investissements d'Avenir (PIA), en Recherche en Sureté Nucléaire et Radioprotection (RSNR)
CNRS, CentraleSupélec, Université Paris Saclay, IRSN
ANR-11-RSNR-0015,MITHYGENE,Amélioration de la connaissance du risque hydrogène et de sa gestion en situation d'accident grave(2011)
Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences de l'Ingénierie et des Systèmes (INSIS)
Source :
16ème Congrès Francophone de Techniques Laser pour la mécanique des fluides, 16ème Congrès Francophone de Techniques Laser pour la mécanique des fluides, Sep 2018, Dourdan, France
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; En situation d’accident grave (AG) de fusion d’un cœur de réacteur nucléaire, d’importantes quantités d’hydrogène peuvent être produites par l’interaction du cœur chaud avec l’eau de refroidissement (oxydation des gaines en zircalloy qui confinent le combustible) ou par l’interaction du corium –magma résultant de la fusion du cœur- avec le béton de l’enceinte. L’hydrogène se diffuse alors dans l’enceinte de confinement du réacteur via des boucles de convection et s’y répartit de façon plus ou moins homogène selon la composition de l’atmosphère. Localement, la concentration limite dite d’inflammabilité peut être dépassée. Pour prévenir ce risque, les enceintes des réacteurs à eau pressurisée (REP) des centrales françaises sont équipées de recombineurs autocatalytiques passifs (RAPs). Malgré ces dispositifs, le risque de combustion persiste. Aussi et pour mieux gérer un AG, il est nécessaire de disposer d’informations précises sur la répartition des gaz (H2, air, vapeur d’eau, CO) dans l’enceinte de confinement. A cet égard, le développement d’un dispositif de mesures multi-points, permettant de caractériser la composition de l’atmosphère de l’enceinte de confinement en temps réel sans rompre le confinement, représente un atout considérable. Une mesure optique des différents gaz contenus dans l’enceinte met en œuvre un déport par fibre optique du signal au-delà du périmètre radiologique de l’accident. Toutefois, le procédé de mesure par absorption habituellement mis en œuvre pour la détection de gaz n’est pas adapté aux molécules symétriques (O2, N2, H2) qui ne présentent pas de transition dipolaire électrique dans le domaine visible ou infrarouge (IR) de transmission par fibres optiques. De facto, les sectionsd’interaction sont faibles, des cellules d’interaction de parcours importants sont alors nécessaires, en contradiction avec l’objectif d’une mesure ponctuelle. A contrario, toutes ces molécules présentent une signature Raman spécifique permettant une mesure multigaz absolue (par rapport à un étalon interne à la sonde), ou relativement à un gaz de pression partielle connue (e.g. N2) [2, 3, 4].La diffusion Raman spontanée (DRS) présente un grand nombre d’avantages pour la gestion du risque H2 en situation AG : mesure ponctuelle (mm3 ), sélective, multipoints (analyse multitrack), sonde Raman de constitution simple, robuste (optique passive, pas d’électronique sensible aux environnements nucléaires). L’instrumentation spectrométrique est déportée et emploie peu d’éléments (un laser, un spectromètre imageur), optimisant le déploiement, le coût et l’analyse de données. Enfin, une détection de gaz imprévus est possible (contrairement au procédé par absorption), valeur ajoutée en termes de sûreté. En contrepartie, la DRS présente aussi des limitations : le rendement est très faible (Raman/laser 10˜ −15) en raison des faibles sections de diffusion Raman et densité des gaz. Les interfaces optiques doivent être protégées de la condensation et des contaminants. Dans le contexte du projet MITHYGENE, le CEA LIST, l’IRSN et la société ARCYS ont mis au point un dispositif expérimental de mesure de gaz par effet Raman constitué de sondes Raman reliées par fibres optiques à une unité de mesure transportable. La gamme spectrale Raman s’étend sur [684 – 872 nm] (laser @640 nm) permettant de détecter les espèces O2, N2, H2O et H2. Les sondes fonctionnent en espace libre afin de ne pas fausser la répartition du mélange (tout dispositif de prélèvement ou deconfinement par guide est proscrit). Après étalonnages en enceinte climatique et en tubes à choc (H2/N2), nous détaillons les essais thermodynamiques menés sur 3 sondes dans l’enceinte MISTRA (CEA/DEN) [5] destinée à des essais en gaz et représentative (à l’échelle 1/10) d’une enceinte de confinement d’un REP.

Details

Language :
French
Database :
OpenAIRE
Journal :
16ème Congrès Francophone de Techniques Laser pour la mécanique des fluides, 16ème Congrès Francophone de Techniques Laser pour la mécanique des fluides, Sep 2018, Dourdan, France
Accession number :
edsair.dedup.wf.001..09f9d0fa4704bc79c6e36273f1fc931b