Back to Search Start Over

Autonomous Pareto Front Scanning using a Multi-Agent System for Multidisciplinary Optimization

Authors :
Julien Martin
Jean-Pierre Georgé
Marie-Pierre Gleizes
Mickaël Meunier
Systèmes Multi-Agents Coopératifs (IRIT-SMAC)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
SNECMA Villaroche [Moissy-Cramayel]
Safran Group
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université Toulouse 1 Capitole - UT1 (FRANCE)
SAFRAN (FRANCE)
Société nationale d'étude et de constructions de moteurs d'avion - SNECMA (FRANCE)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Source :
HAL, Mathematical Methods in Science and Mechanics, 16th International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS 2014), 16th International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS 2014), Oct 2014, Lisbonne, Portugal. pp. 20-29

Abstract

Multidisciplinary Design Optimization (MDO) problems can have a unique objective or be multi-objective. In this paper, we are interested in MDO problems having at least two conflicting objectives. This characteristic ensures the existence of a set of compromise solutions called Pareto front. We treat those MDO problems like Multi-Objective Optimization (MOO) problems. Actual MOO methods suffer from certain limitations, especially the necessity for their users to adjust various parameters. These adjustments can be challenging, requiering both disciplinary and optimization knowledge. We propose the use of the Adaptive Multi-Agent Systems technology in order to automatise the Pareto front obtention. ParetOMAS (Pareto Optimization Multi-Agent System) is designed to scan Pareto fronts efficiently, autonomously or interactively. Evaluations on several academic and industrial test cases are provided to validate our approach.

Details

Database :
OpenAIRE
Journal :
HAL, Mathematical Methods in Science and Mechanics, 16th International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS 2014), 16th International Conference on Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS 2014), Oct 2014, Lisbonne, Portugal. pp. 20-29
Accession number :
edsair.dedup.wf.001..0cd2d20b12e0e56519f2c8bda9eadf27