Back to Search Start Over

Numerical Analysis of a Method for Solving 2D Linear Isotropic Elastodynamics with Free Boundary Condition using Potentials and Finite Elements

Authors :
Albella Martínez, Jorge
Imperiale, Sébastien
Joly, Patrick
Rodríguez, Jerónimo
Departamento de Matemática Aplicada
Universidade de Santiago de Compostela [Spain] (USC )
Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM)
Laboratoire de mécanique des solides (LMS)
École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Institut Polytechnique de Paris (IP Paris)
Propagation des Ondes : Étude Mathématique et Simulation (POEMS)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité de Mathématiques Appliquées (UMA)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS)
École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Source :
Mathematics of Computation, Mathematics of Computation, American Mathematical Society, In press, ⟨10.1007/s10915-018-0768-9⟩, Mathematics of Computation, In press, ⟨10.1007/s10915-018-0768-9⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; When solving 2D linear elastodynamic equations in a homogeneous isotropic media, a Helmholtz decomposition of the displacement field decouples the equations into two scalar wave equations that only interact at the boundary. It is then natural to look for numerical schemes that independently solve the scalar equations and couple the solutions at the boundary. The case of rigid boundary condition was treated In [3, 2]. However in [4] the case of free surface boundary condition was proven to be unstable if a straight- forward approach is used. Then an adequate functional framework as well as a time domain mixed formulation to circumvent these issues was presented. In this work we first review the formulation presented in [4] and propose a subsequent discretised formulation. We provide the complete stability analysis of the corresponding numerical scheme. Numerical results that illustrate the theory are also shown.

Details

Language :
English
ISSN :
00255718
Database :
OpenAIRE
Journal :
Mathematics of Computation, Mathematics of Computation, American Mathematical Society, In press, ⟨10.1007/s10915-018-0768-9⟩, Mathematics of Computation, In press, ⟨10.1007/s10915-018-0768-9⟩
Accession number :
edsair.dedup.wf.001..11c27633d1f44e986be8060422522fc0
Full Text :
https://doi.org/10.1007/s10915-018-0768-9⟩