Back to Search
Start Over
Nutrient Stoichiometry in Benthic Food Webs – Interactions Between Algae, Herbivores and Fish
- Publication Year :
- 2006
- Publisher :
- Uppsala universitet, Institutionen för ekologi och evolution, 2006.
-
Abstract
- The aim of this thesis was to identify general structuring mechanisms in benthic food webs within the framework of ecological stoichiometry theory. Ecological stoichiometry is defined as the balance of multiple chemical substances in ecological interactions and explicitly considers the combined dynamics of key elements such as carbon (C), nitrogen (N) and phosphorus (P). Ecological stoichiometry theory was developed for pelagic environments, thus it must be tested whether the same mechanisms are applicable to benthic environments. In this thesis, ecological stoichiometry theory was used as a framework to investigate nutrient pathways in benthic littoral ecosystems. I conducted one invertebrate field sampling and six experiments. In the experiments, factors such as grazing, light, nutrients and fish presence were manipulated. The results showed that stoichiometric variability in consumers could mostly be explained by taxa. However, there was some stoichiometric variability due to sampling season, site, and nutrient enrichment. Grazing mostly increased periphyton N and P content, although nutrient recycling effects were dependent on grazer stoichiometry. Grazing changed benthic algal community composition by increasing the proportion of grazing resistant algae species. Additionally, grazing decreased algal diversity, especially under nutrient poor conditions. The manipulation of fish presence revealed that fish affected primary producer biomass and stoichiometry through nutrient recycling. The manipulation of abiotic factors, such as light and nutrient addition could affect periphyton nutrient content, biomass and benthic algal chlorophyll a content. The separate addition of N or P led to an increase of the added nutrient in the periphyton. Increased light intensities led to a decreased cellular chlorophyll a content and increased C:nutrient ratios. This thesis arrives at the conclusion that periphyton-grazer-predator interactions in the benthic are bound by stoichiometric constraints. Nutrient recycling by benthic invertebrates and fish are important mechanism in benthic littoral ecosystems.
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.dedup.wf.001..19791d3acaea7db8b090f026be804663