Back to Search Start Over

Estimation of the energy efficiency of a wood gasification CHP plant using Aspen Plus

Authors :
J. François
L. Abdelouahed
G. Mauviel
M. Feidt
C. Rogaume
O. Mirgaux
F. Patisson
A. Dufour
Laboratoire Réactions et Génie des Procédés (LRGP)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Fédération de Recherche Jacques Villermaux pour Mécanique, l'Energie, les Procédés (FJV)
Institut Jean Lamour (IJL)
Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
GREENER
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA )
Laboratoire d'Etude et de Recherche sur le Matériau Bois (LERMAB)
Université de Lorraine (UL)
Source :
Chemical Engineering Transactions, Chemical Engineering Transactions, AIDIC, 2012, 29, pp.769-774. ⟨10.3303/CET1229129⟩, Chemical Engineering Transactions, Vol 29 (2012)
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; The simultaneous combined heat and power (CHP) production via biomass gasification is considered as one of the main alternatives to fossil energy. Yet, a major obstacle in the development of this advanced technology lies in the presence of tars in syngas that are responsible for clogging downstream process equipment. Mathematical modelling and simulation studies are powerful tools to predict the performance of new processes. Baratieri et al. (2009), Pérez-Fortes et al. (2011) or Damartzis et al. (2012) develop comprehensive models of integrated biomass gasification plant, but based on thermochemical equilibrium approach that do not take into account the formation of tars. Recently, extensive models of Dual Fluidised Bed (DFB) gasifier demonstrate the possibility of accurately predict the formation of tars in syngas (Abdelouahed et al., 2012). The work presented in this paper consists in integrating a rigorous model of a DFB gasifier capable of predicting tar and contaminants in a global biomass CHP process. Our model includes the steps of wood drying, wood gasification, syngas cleaning, and power production in gas engine. Heat integration is considered all over the process for intern consumption and extern district heating. The model is set in Aspen Plus® and external Fortran user-subroutines are used to precisely describe complex phenomena in gasification reactor and gas engine. The energey efficiency of the CHP plant is evaluated. Simulation results highlight the strong impact of the syngas cleaning step in the overall performance of the CHP plant.

Details

Language :
English
ISSN :
22839216
Database :
OpenAIRE
Journal :
Chemical Engineering Transactions, Chemical Engineering Transactions, AIDIC, 2012, 29, pp.769-774. ⟨10.3303/CET1229129⟩, Chemical Engineering Transactions, Vol 29 (2012)
Accession number :
edsair.dedup.wf.001..241b2060afdb5fd88ce7618c9ed86e67
Full Text :
https://doi.org/10.3303/CET1229129⟩