Back to Search Start Over

Estimation of the Multivariate Conditional-Tail-Expectation for extreme risk levels: illustrations on environmental data-sets

Authors :
Di Bernardino, Elena
Prieur, Clémentine
Centre d'études et de recherche en informatique et communications (CEDRIC)
Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)
Mathematics and computing applied to oceanic and atmospheric flows (AIRSEA)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Laboratoire Jean Kuntzmann (LJK )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)
HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

This paper deals with the problem of estimating the Multivariate version of the Conditional-Tail-Expectation introduced in the bivariate framework in Di Bernardino et al. [16], and generalized in Cousin and Di Bernardino [13]. We propose a new semi-parametric estimator for this risk measure, essentially based on statistical extrapolation techniques, well designed for extreme risk levels. Following Cai et al. [9], we prove a central limit theorem. We illustrate the practical properties of our estimator on simulations. The performances of our new estimator are discussed and compared to the ones of the empirical Kendall's process based estimator, previously proposed in Di Bernardino and Prieur [17]. We conclude with two applications on real data-sets: rainfall measurements recorded at three stations located in the south of Paris (France) and the analysis of strong wind gusts in the north west of France.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..25e8a3630d7dd6c6df1dbe58683cd999