Back to Search Start Over

Sparsity-Promoting Bayesian Dynamic Linear Models

Authors :
Caron, François
Bornn, Luke
Doucet, Arnaud
Advanced Learning Evolutionary Algorithms (ALEA)
Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Department of Statistics [Vancouver] (UBC Statistics)
University of British Columbia (UBC)
Department of Statistics [Oxford]
University of Oxford [Oxford]
INRIA
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
University of Oxford
Source :
[Research Report] RR-7895, INRIA. 2012, pp.23
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

Sparsity-promoting priors have become increasingly popular over recent years due to an increased number of regression and classification applications involving a large number of predictors. In time series applications where observations are collected over time, it is often unrealistic to assume that the underlying sparsity pattern is fixed. We propose here an original class of flexible Bayesian linear models for dynamic sparsity modelling. The proposed class of models expands upon the existing Bayesian literature on sparse regression using generalized multivariate hyperbolic distributions. The properties of the models are explored through both analytic results and simulation studies. We demonstrate the model on a financial application where it is shown that it accurately represents the patterns seen in the analysis of stock and derivative data, and is able to detect major events by filtering an artificial portfolio of assets.

Details

Language :
English
Database :
OpenAIRE
Journal :
[Research Report] RR-7895, INRIA. 2012, pp.23
Accession number :
edsair.dedup.wf.001..2cc2cb59976d80c9c5bd3a9500ee4c18