Back to Search Start Over

Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco

Authors :
Bouras, El houssaine
Jarlan, Lionel
Er-Raki, Salah
Balaghi, Riad
Amazirh, Abdelhakim
Richard, Bastien
Khabba, Saïd
Université Cadi Ayyad [Marrakech] (UCA)
Centre d'études spatiales de la biosphère (CESBIO)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Institut national de la recherche agronomique [Maroc] (INRA Maroc)
Université Mohammed VI Polytechnique [Ben Guerir] (UM6P)
Gestion de l'Eau, Acteurs, Usages (UMR G-EAU)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
ARTS program from IRD, France
H2020 PRIMA ALTOS project
MISTRALS/SICMED2
PHC Toubkal - 39064WG/2018
PRIMA-IDEWA project
CHAAMS project - ERANETMED03-62
ACCWA project - 823965
SAGESSE - PPR/2015/48
Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Mohammed VI Polytechnic University [Marocco] (UM6P)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Source :
Remote Sensing, Remote Sensing, 2021, 13 (16), pp.3101. ⟨10.3390/rs13163101⟩, Remote Sensing, Vol 13, Iss 3101, p 3101 (2021), Remote Sensing, MDPI, 2021, 13 (16), pp.3101. ⟨10.3390/rs13163101⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Accurate seasonal forecasting of cereal yields is an important decision support tool for countries, such as Morocco, that are not self-sufficient in order to predict, as early as possible, importation needs. This study aims to develop an early forecasting model of cereal yields (soft wheat, barley and durum wheat) at the scale of the agricultural province considering the 15 most productive over 2000–2017 (i.e., 15 × 18 = 270 yields values). To this objective, we built on previous works that showed a tight linkage between cereal yields and various datasets including weather data (rainfall and air temperature), regional climate indices (North Atlantic Oscillation in particular), and drought indices derived from satellite observations in different wavelengths. The combination of the latter three data sets is assessed to predict cereal yields using linear (Multiple Linear Regression, MLR) and non-linear (Support Vector Machine, SVM; Random Forest, RF, and eXtreme Gradient Boost, XGBoost) machine learning algorithms. The calibration of the algorithmic parameters of the different approaches are carried out using a 5-fold cross validation technique and a leave-one-out method is implemented for model validation. The statistical metrics of the models are first analyzed as a function of the input datasets that are used, and as a function of the lead times, from 4 months to 2 months before harvest. The results show that combining data from multiple sources outperformed models based on one dataset only. In addition, the satellite drought indices are a major source of information for cereal prediction when the forecasting is carried out close to harvest (2 months before), while weather data and, to a lesser extent, climate indices, are key variables for earlier predictions. The best models can accurately predict yield in January (4 months before harvest) with an R2 = 0.88 and RMSE around 0.22 t. ha−1. The XGBoost method exhibited the best metrics. Finally, training a specific model separately for each group of provinces, instead of one global model, improved the prediction performance by reducing the RMSE by 10% to 35% depending on the provinces. In conclusion, the results of this study pointed out that combining remote sensing drought indices with climate and weather variables using a machine learning technique is a promising approach for cereal yield forecasting.

Details

Language :
English
ISSN :
20724292
Database :
OpenAIRE
Journal :
Remote Sensing, Remote Sensing, 2021, 13 (16), pp.3101. ⟨10.3390/rs13163101⟩, Remote Sensing, Vol 13, Iss 3101, p 3101 (2021), Remote Sensing, MDPI, 2021, 13 (16), pp.3101. ⟨10.3390/rs13163101⟩
Accession number :
edsair.dedup.wf.001..2dc7c0d5cbf291f5638e996d808c48bf