Back to Search Start Over

How MIDAS improved our understanding of micrometre- sized cometary dust

Authors :
Mannel, Thurid
Bentley, Mark Stephen
Boakes, Peter
Jeszenszky, Harald
Levasseur-Regourd, Anny Chantal
Schmied, Roland
Torkar, Klaus
Cardon, Catherine
Space Research Institute of Austrian Academy of Sciences (IWF)
Austrian Academy of Sciences (OeAW)
Institute of Physics [Graz]
Karl-Franzens-Universität [Graz, Autriche]
PLANETO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Karl-Franzens-Universität Graz
Source :
European Planetary Science Congress 2017, European Planetary Science Congress 2017, Sep 2017, Riga, Latvia. pp.EPSC2017-258
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; The MIDAS atomic force microscope on the Rosetta orbiter was an instrument developed to investigate, for the first time, the morphology of nearly unaltered cometary dust. It acquired the 3D topography of about 1-50 µm sized dust particles with resolutions down to a few nanometres. These images showed the agglomerate character of the dust and confirmed that the smallest subunit sizes were less than 100 nm. MIDAS acquired the first direct proof of a fractal dust particle, opening a new approach to investigate the history of our early Solar System and of comets.

Details

Language :
English
Database :
OpenAIRE
Journal :
European Planetary Science Congress 2017, European Planetary Science Congress 2017, Sep 2017, Riga, Latvia. pp.EPSC2017-258
Accession number :
edsair.dedup.wf.001..39854eb1c54ffb39666b40790006b050