Back to Search Start Over

Effects of Climate Change Factors on the Water Status, Photosynthetic Rate, and Metabolic Regulation in Peach

Authors :
Jiménez Tarodo, Sergio
Fattahi, Masoud
Bedis, Khaoula
Nasrolahpour-Moghadam, Shirin
Irigoyen, Juan José
Gogorcena Aoiz, Yolanda
Ministerio de Economía y Competitividad (España)
Gobierno de Aragón
La Caixa
European Commission
Consejo Superior de Investigaciones Científicas (España)
Iranian Government
Instituto Agronómico Mediterráneo de Zaragoza
Gogorcena Aoiz, Yolanda
Gogorcena Aoiz, Yolanda [0000-0003-1081-430X]
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2020
Publisher :
Frontiers Media, 2020.

Abstract

18 Pags.- 6 Tabls.- 2 Figs. Copyright © 2020 Jiménez, Fattahi, Bedis, Nasrolahpour-moghadam, Irigoyen and Gogorcena. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.<br />Environmental stress factors caused by climate change affect plant growth and crop production, and pose a growing threat to sustainable agriculture, especially for tree crops. In this context, we sought to investigate the responses to climate change of two Prunus rootstocks (GF677 and Adesoto) budded with Catherina peach cultivar. Plants were grown in 15 L pots in temperature gradient greenhouses for an 18 days acclimation period after which six treatments were applied: [CO2 levels (400 versus 700 µmol mol-1), temperature (ambient versus ambient + 4°C), and water availability (well irrigated versus drought)]. After 23 days, the effects of stress were evaluated as changes in physiological and biochemical traits, including expression of relevant genes. Stem water potential decreased under drought stress in plants grafted on GF677 and Adesoto rootstocks; however, elevated CO2 and temperature affected plant water content differently in both combinations. The photosynthetic rate of plants grafted on GF677 increased under high CO2, but decreased under high temperature and drought conditions. The photosynthetic rates of plants grafted onto Adesoto were only affected by drought treatment. Furthermore, in GF677–Catherina plants, elevated CO2 alleviated the effect of drought, whereas in those grafted onto Adesoto, the same condition produced acclimation in the rate. Stomatal conductance decreased under high CO2 and drought stress in both grafted rootstocks, and the combination of these conditions improved water-use efficiency. Changes in the sugar content in scion leaves and roots were significantly different under the stress conditions in both combinations. Meanwhile, the expression of most of the assessed genes was significantly affected by treatment. Regarding genotypes, GF677 rootstock showed more changes at the molecular and transcriptomic level than did Adesoto rootstock. A coordinated shift was found between the physiological status and the transcriptomic responses. This study revealed adaptive responses to climate change at the physiological, metabolic, and transcriptomic levels in two Prunus rootstocks budded with 'Catherina'. Overall, these results demonstrate the resilient capacity and plasticity of these contrasting genotypes, which can be further used to combat ongoing climate changes and support sustainable peach production.<br />This work was partly funded by the Spanish Ministry of Economy and Competitiveness grants AGL2014-52063R, AGL2017-83358-R (MCIU/AEI/FEDER/UE); and the Government of Aragón with grants A44, A09_17R and La Caixa-GA-0007/2010 which were co-financed with FEDER funds. MF and SN-M were recipients of Iranian fellowships. SJ was supported by JAE-Doc-CSIC contract co-funded by ESF. KB received a Master's fellowship awarded by the CIHEAM-IAMZ.

Details

Language :
English
Database :
OpenAIRE
Journal :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Accession number :
edsair.dedup.wf.001..4cc234dd597369bee75920b3daddfddf