Back to Search Start Over

Comparing CO2 retrieved from Atmospheric Infrared Sounder with model predictions: Implications for constraining surface fluxes and lower-to-upper troposphere transport

Authors :
Peylin, Philippe
Tiwari, Yogesh
Gloor, Manuel
Engelen, Richard
Chevallier, Frederic
Roedenbeck, Christian
Korner, Stefan
Braswell, Bobby
Heimann, Martin
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS)
Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
Biogéochimie et écologie des milieux continentaux (Bioemco)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)
Laboratoire réactivité et chimie des solides (LRCS)
Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Paris (ENS Paris)
Source :
Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Atmospheres, American Geophysical Union, 2006, pp.D17106
Publication Year :
2006
Publisher :
HAL CCSD, 2006.

Abstract

International audience; Large-scale carbon sources and sinks can be estimated by combining atmospheric CO2 concentration data with atmospheric transport inverse modeling. This approach has been limited by sparse spatiotemporal tropospheric sampling. CO2 estimates from space using observations on recently launched satellites (Atmospheric Infrared Sounder (AIRS)), or platforms to be launched (Infrared Atmospheric Sounding Interferometer (IASI), Orbiting Carbon Observatory (OCO)) have the potential to fill some of these gaps. Here we assess the realism of initial AIRS-based mid-to-upper troposphere CO2 estimates from European Centre for Medium-Range Weather Forecasts by comparing them with simulations of two transport models (TM3 and Laboratoire Meteorologie Dynamique Zoom (LMDZ)) forced with one data-based set of surface fluxes. The simulations agree closer with one another than with the retrievals. Nevertheless, there is good overall agreement between all estimates of seasonal cycles and north-south gradients within the latitudinal band extending from 30 degrees S to 30 degrees N, but not outside this region. At smaller spatial scales, there is a contrast in the satellite-based retrievals above continents versus above oceans that is absent in the model predictions. Hovmoeller diagrams indicate that in the models, high Northern Hemisphere winter CO2 concentrations propagate toward the tropical upper troposphere via Northern Hemisphere high latitudes, while in retrievals, elevated winter CO2 appears instantaneously throughout the Northern Hemisphere. This raises questions about lower-to-upper troposphere transport pathways. Prerequisites for use of retrievals to provide an improved constraint on surface fluxes are therefore further improvements in retrievals and better understanding/validation of lower-to-upper troposphere transport and its modeling. This calls for more independent upper troposphere transport tracer data like SF6 and CO2.

Details

Language :
English
ISSN :
2169897X and 21698996
Database :
OpenAIRE
Journal :
Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Atmospheres, American Geophysical Union, 2006, pp.D17106
Accession number :
edsair.dedup.wf.001..4ed6e9be0530776525683e7a2c6e3ed5