Back to Search Start Over

Quadric Conformal Geometric Algebra of ${\mathbb {R}}^{9,6}$

Authors :
Breuils, Stéphane
Nozick, Vincent
Sugimoto, Akihiro
Hitzer, Eckhard
Laboratoire d'Informatique Gaspard-Monge (LIGM)
Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM)
Japanese French Laboratory for Informatics (JFLI)
National Institute of Informatics (NII)-Université Pierre et Marie Curie - Paris 6 (UPMC)-The University of Tokyo (UTokyo)-Centre National de la Recherche Scientifique (CNRS)
National Institute of Informatics (NII)
International Christian University (ICU)
Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS)
Source :
Advances in Applied Clifford Algebras, Advances in Applied Clifford Algebras, Springer Verlag, 2018, 28 (2), pp.35. ⟨10.1007/s00006-018-0851-1⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; Geometric Algebra can be understood as a set of tools to represent, construct and transform geometric objects. Some Geometric Algebras like the well-defined Conformal Geometric Algebra constructs lines, circles, planes, and spheres from control points just by using the outer product. There exist some Geometric Algebras to handle more complex objects such as quadric surfaces; however in this case, none of them is known to build quadric surfaces from control points. This paper presents a novel Geometric Algebra framework, the Geometric Algebra of R 9,6 , to deal with quadric surfaces where an arbitrary quadric surface is constructed by the mere wedge of nine points. The proposed framework enables us not only to intuitively represent quadric surfaces but also to construct objects using Conformal Geometric Algebra. Our proposed framework also provides the computation of the intersection of quadric surfaces, the normal vector, and the tangent plane of a quadric surface.

Details

Language :
English
ISSN :
01887009 and 16614909
Database :
OpenAIRE
Journal :
Advances in Applied Clifford Algebras, Advances in Applied Clifford Algebras, Springer Verlag, 2018, 28 (2), pp.35. ⟨10.1007/s00006-018-0851-1⟩
Accession number :
edsair.dedup.wf.001..521c794c80425dba49c23549dab22c7e
Full Text :
https://doi.org/10.1007/s00006-018-0851-1⟩