Back to Search Start Over

Helium implantation into 4H-SiC

Authors :
Barbot, J-F.
Leclerc, S.
David, M.-L.
Oliviero, E.
Montsouka, R.
Pailloux, F.
Eyidi, D.
F. Denanot, M.
Beaufort, M.F.
Declémy, A.
Audurier, V.
Tromas, C.
Laboratoire de Physique des Matériaux (PhyMat)
Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers
Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques (PECSA)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
CSNSM SEM
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM)
Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
Laboratoire de métallurgie physique (LMP)
Université de Poitiers-Centre National de la Recherche Scientifique (CNRS)
Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Source :
physica status solidi (a), physica status solidi (a), Wiley, 2009, 206, pp.1916-1923. ⟨10.1002/pssa.200881468⟩, physica status solidi (a), 2009, 206, pp.1916-1923. ⟨10.1002/pssa.200881468⟩
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

The paper provides the properties of single crystalline 4H-SiC under helium implantation at temperatures of implantation up to 750 ◦C and fluences in the range 5×1015-1×1017 cm−2. The microstructure evolution was studied by transmission electron microscopy cross- section and X-ray diffraction experiments. The mechanical property changes were investigated by using nanoindentation tests followed by atomic force microscopy observations and by using tribological tests. At elevated temperature of implantation and/or in the low fluence regime at room temperature where only the strained state of SiC is obtained, SiC becomes more resistant to crack formation but no significant change in mechanical properties is seen. At room temperature with increasing fluence the damage accumulation leads to the amorphous state for which a strong degradation of the mechanical properties is observed. At elevated temperature of implantation, amorphization is avoided and a thermally activated saturation of the strain is observed in the near surface region whereas defect accumulation occurs near the maximum of damage. Upon annealing subsequent to room temperature implantation, the near surface strain progressively relaxes while the helium ions agglomerate into platelets around the maximum of strain. These platelets evolve into bubble clusters at temperatures where the vacancies become mobile. Under particular conditions of implantation (high fluence and elevated temperature) the swelling of the surface increases during annealing due to the growth of bubbles and the formation of stacking faults resulting from the migration of interstitials towards the maximum of damage. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Details

Language :
English
ISSN :
00318965 and 18626319
Database :
OpenAIRE
Journal :
physica status solidi (a), physica status solidi (a), Wiley, 2009, 206, pp.1916-1923. ⟨10.1002/pssa.200881468⟩, physica status solidi (a), 2009, 206, pp.1916-1923. ⟨10.1002/pssa.200881468⟩
Accession number :
edsair.dedup.wf.001..52329be9e9db6e4d34df15787d93c12c