Back to Search Start Over

Reinforcement Learning for Dynamic Spectrum Management in WCDMA

Authors :
Vucevic, Nemanja
Pérez Romero, Jordi|||0000-0001-9131-5013
Sallent Roig, Oriol|||0000-0002-2114-1406
Agustí Comes, Ramon|||0000-0002-2846-2261
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
Universitat Politècnica de Catalunya. GRCM - Grup de Recerca en Comunicacions Mòbils
Source :
Telfor Journal, Vol 1, Iss 1, Pp 6-9 (2009), Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publication Year :
2009
Publisher :
Telecommunications Society, Academic Mind, 2009.

Abstract

Low use of licensed spectrum imposes a need for the advanced spectrum management for wise spectrum usage with the release of unneeded frequency bands for the secondary markets and opportunistic access. In this paper we present the possibilities to apply reinforcement learning in WCDMA to enable the autonomous decision on spectrum repartition among cells and release of frequency bands for possible secondary usage. The proposed solution increases spectrum efficiency while ensuring maximum outage probability constraints in WCDMA uplink. We give two possible approaches to implement reinforcement learning in this problem area and compare their behavior. Simulations demonstrate the capability of two methods to successfully achieve desired goals.

Details

Language :
English
ISSN :
18213251
Volume :
1
Issue :
1
Database :
OpenAIRE
Journal :
Telfor Journal
Accession number :
edsair.dedup.wf.001..54e186fd6438dd2f6bacd71308dc90bc