Back to Search Start Over

Integration over angular variables for two coupled matrices

Authors :
Mahoux, G.
Mehta, M.L.
Normand, J.-M.
Institut de Physique Théorique - UMR CNRS 3681 (IPHT)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Pavel Bleher
Alexander Its
Savelli, Bruno
Source :
Random Matrix Models and Their Applications, Pavel Bleher; Alexander Its. Random Matrix Models and Their Applications, 40, Cambridge UP, pp.301-320, 2001, MSRI Publications, 0-521-80209-1
Publication Year :
2001
Publisher :
HAL CCSD, 2001.

Abstract

International audience; An integral over the angular variables for two coupled $n$ x $n$ real symmetric, complex hermitian or quaternion self-dual matrices is expressed in term of the eigenvalues and eigenfunctions of a hamiltonian closely related to the Calogero hamiltinian. This generalizes the known result for the complex hermitian matrices. The integral can thus be evaluated for $n = 2$ and reduced to a single sum for $n = 3$

Details

Language :
English
ISBN :
978-0-521-80209-3
0-521-80209-1
ISBNs :
9780521802093 and 0521802091
Database :
OpenAIRE
Journal :
Random Matrix Models and Their Applications, Pavel Bleher; Alexander Its. Random Matrix Models and Their Applications, 40, Cambridge UP, pp.301-320, 2001, MSRI Publications, 0-521-80209-1
Accession number :
edsair.dedup.wf.001..569b66d912ee7e7964030b3e052e37a3