Back to Search Start Over

Wafer-scale HfO2 encapsulated silicon nanowire field effect transistor for efficient label-free DNA hybridization detection in dry environment

Authors :
Jayakumar, Ganesh
Legallais, Maxime
Hellstrom, Per-Erik
Mouis, Mireille
Pignot-Paintrand, Isabelle
Stambouli-Sene, Valerie
TERNON, Céline
Östling, Mikael
Royal Institute of Technology [Stockholm] (KTH )
Laboratoire des matériaux et du génie physique (LMGP )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire des technologies de la microélectronique (LTM )
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation (IMEP-LAHC )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
European Project: 688329,H2020,H2020-ICT-2015,Nanonets2Sense(2016)
Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Source :
Nanotechnology, Nanotechnology, 2019, 30, pp.184002+12. ⟨10.1088/1361-6528/aaffa5⟩, Nanotechnology, Institute of Physics, 2019, 30, pp.184002+12. ⟨10.1088/1361-6528/aaffa5⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; Silicon nanowire (SiNW) charge based biosensors are attractive for DNA sensing applications due to their compactness and large surface-to-volume ratio. Small feature size, low production cost, repeatability, high sensitivity and selectivity are some of the key requirements for biosensors. The most common e-beam manufacturing method employed to manufacture sub-nm SiNWs is both cost and time intensive. Therefore, we propose a highly reproducible CMOS industry grade low-cost process to fabricate SiNW-based field effect transistors on 4''-wafers. The 60 nm wide SiNWs reported in this paper are fabricated using the sidewall transfer lithography process which is a self-aligned-double-patterning I-line lithography process that also facilitates encapsulation of the SiNW surface with a thin HfO2 layer on which DNA probes are grafted to finalize the biosensors. Upon DNA hybridization, SiNW devices exhibit threshold voltage shift larger than the noise introduced by the exposition to saline solutions used for the bioprocesses. More specifically, based on a statistical analysis, we demonstrate that 85% of the tested devices exhibit a positive threshold voltage shift after DNA hybridization. These promising results make way for the monolithic integration of SiNW biosensors and CMOS circuitry to realize a point of care device which can offer reliable real time electrical readout.

Details

Language :
English
ISSN :
09574484 and 13616528
Database :
OpenAIRE
Journal :
Nanotechnology, Nanotechnology, 2019, 30, pp.184002+12. ⟨10.1088/1361-6528/aaffa5⟩, Nanotechnology, Institute of Physics, 2019, 30, pp.184002+12. ⟨10.1088/1361-6528/aaffa5⟩
Accession number :
edsair.dedup.wf.001..5cfd0130dc2a1a3cbfa4554a32d7b404