Back to Search Start Over

Ultra fast prompt-gamma imaging for the online monitoring of the ion range in hadron therapy

Authors :
Livingstone, J.
Etxebeste, A.
Curtoni, S.
Dauvergne, D.
Fontana, M.
Gallin-Martel, L.
Létang, Jean Michel
Marcatili, S.
Morel, C.
Sarrut, David
Testa, E.
Laboratoire de Physique Subatomique et de Cosmologie (LPSC)
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Institut de Physique des 2 Infinis de Lyon (IP2I Lyon)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Imagerie Tomographique et Radiothérapie
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Centre de Physique des Particules de Marseille (CPPM)
Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Centre Léon Bérard [Lyon]
Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU)
Source :
IEEE MIC 2019, IEEE MIC 2019, Oct 2019, Manchester, United Kingdom
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; Uncertainties in the ion range mean that the ideal ballistic properties of ions are not fully exploited in hadron therapy. Prompt γ imaging using a Compton camera has been proposed as a method of range verification for hadron therapy. Previous Monte Carlo studies of the CLaRyS Compton camera prototype demonstrated a 2 mm precision in the measured proton range for 108 particle histories using an iterative method of reconstruction of the γ emission profile. Using a hodoscope the reconstruction is simplified as for each detected event, the number of possible solutions is reduced to just two. Whilst the line cone reconstruction method is much faster than the iterative method, its precision was found to be worse due to the inability to discriminate between the two solutions. The aim of this study was to investigate the effect of temporal resolution on the precision of the range measured using the line cone reconstruction method and to propose a method of solution discrimination based on the time flight (TOF). To this end, GATE Monte Carlo simulations were performed. Protons of 160 MeV (109) were generated towards a cylindrical PMMA phantom. The GatePulseAdder was used to record coincidences between the scatterer and absorber stages of the CLaRyS camera. For each set of coincidences the line cone reconstruction was performed. For each solution, a TOF was estimated for the corresponding track (proton + γ) and compared to the TOF given by the simulation. The difference between the two, ΔTOF, was used to discriminate between the two solutions. The effect of the temporal resolution was investigated by placing an upper threshold on ΔTOF and the resulting emission profiles were compared to the real γ emission profile. It was found that a better temporal resolution resulted in a profile which more closely matches the real profile. It is envisaged to redesign the CLaRyS Compton camera with a fast scintillator such as CeBr3 to perform online range verification in hadron therapy.

Details

Language :
English
Database :
OpenAIRE
Journal :
IEEE MIC 2019, IEEE MIC 2019, Oct 2019, Manchester, United Kingdom
Accession number :
edsair.dedup.wf.001..6a67161e05ab509ad76804a1f73f08ec