Back to Search Start Over

Intelligence artificielle et optimisation avec parallélisme

Authors :
Teytaud, Olivier
Teytaud, Olivier
Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Machine Learning and Optimisation (TAO)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
université paris-sud
Rémi Gilleron
Source :
Optimization and Control [math.OC]. université paris-sud, 2010
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

This document is devoted to artificial intelligence and optimization. This part will bedevoted to having fun with high level ideas and to introduce the subject. Thereafter,Part II will be devoted to Monte-Carlo Tree Search, a recent great tool for sequentialdecision making; we will only briefly discuss other tools for sequential decision making;the complexity of sequential decision making will be reviewed. Then, part IIIwill discuss optimization, with a particular focus on robust optimization and especiallyevolutionary optimization. Part IV will present some machine learning tools, useful ineveryday life, such as supervised learning and active learning. A conclusion (part V)will come back to fun and to high level ideas.<br />On parlera ici de Monte-Carlo Tree Search, d'UCT, d'algorithmes évolutionnaires et d'autres trucs et astuces d'IA;l'accent sera mis sur la parallélisation.

Details

Language :
English
Database :
OpenAIRE
Journal :
Optimization and Control [math.OC]. université paris-sud, 2010
Accession number :
edsair.dedup.wf.001..6b05ad072f045ed2f642bd6c7160ee87