Back to Search Start Over

A Two-Stage Optimal Matching Analysis of Workdays and Workweeks

Authors :
Lesnard, Laurent
Kan, Man Yee
Observatoire sociologique du changement (OSC)
Sciences Po (Sciences Po)-Centre National de la Recherche Scientifique (CNRS)
Centre de données socio-politiques de Sciences Po (CDSP)
Centre de Recherche en Économie et Statistique (CREST)
Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)-École polytechnique (X)-École Nationale de la Statistique et de l'Administration Économique (ENSAE Paris)-Centre National de la Recherche Scientifique (CNRS)
Centre for Time Use Research (CTUR)
University of Oxford [Oxford]
Observatoire sociologique du changement (Sciences Po, CNRS) (OSC)
Centre de données socio-politiques de Sciences Po (Sciences Po, CNRS) (CDSP)
Centre National de la Recherche Scientifique (CNRS)-Sciences Po (Sciences Po)
Source :
Journal of the Royal Statistical Society: Series A Statistics in Society, Journal of the Royal Statistical Society: Series A Statistics in Society, Royal Statistical Society, 2011, 174 (2), pp.349-368. ⟨10.1111/j.1467-985X.2010.00670.x⟩
Publication Year :
2011
Publisher :
HAL CCSD, 2011.

Abstract

International audience; We study the scheduling of work by using optimal matching analysis. We show that optimal matching can be adapted to the number of periodicities and theoretical concerns of the topic by adjusting its costs and parameters. Optimal matching is applied at two stages to define workdays and workweeks at the first and second stage respectively. There were five types of workdays and seven types of workweeks in the UK between 2000 and 2001. Standard workdays represented just over a half of workdays and standard workweeks constituted one in four workweeks. There were three types of part-time workweeks.

Details

Language :
English
ISSN :
09641998 and 1467985X
Database :
OpenAIRE
Journal :
Journal of the Royal Statistical Society: Series A Statistics in Society, Journal of the Royal Statistical Society: Series A Statistics in Society, Royal Statistical Society, 2011, 174 (2), pp.349-368. ⟨10.1111/j.1467-985X.2010.00670.x⟩
Accession number :
edsair.dedup.wf.001..6e416d0bc7d03e04cc3f42b3e970a2ac