Back to Search Start Over

Continuous belief functions and α-stable distributions

Authors :
Fiche, A.
Martin, A.
Cexus, J. -C
Ali KHENCHAF
Lab-STICC_ENSTAB_MOM_PIM
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC)
École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM)
Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM)
Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)
Lab-STICC_ENSTAB_CID_TOMS
Cexus, Jean-Christophe
Source :
Information Fusion (FUSION), 2010 13th Conference on, Information Fusion (FUSION), 2010 13th Conference on, Jul 2010, Edinburgh, United Kingdom. 7 p, HAL, Scopus-Elsevier
Publication Year :
2010
Publisher :
HAL CCSD, 2010.

Abstract

International audience; The theory of belief functions has been formalized in continuous domain for pattern recognition. Some applications use assumption of Gaussian models. However, this assumption is reductive. Indeed, some data are not symmetric and present property of heavy tails. It is possible to solve these problems by using a class of distributions called α-stable distributions. Consequently, we present in this paper a way to calculate pignistic probabilities with plausibility functions where the knowledge of the sources of information is represented by symmetric α-stable distributions. To validate our approach, we compare our results in special case of Gaussian distributions with existing methods. To illustrate our work, we generate arbitrary distributions which represents speed of planes and take decisions. A comparison with a Bayesian approach is made to show the interest of the theory of belief functions.

Details

Language :
English
Database :
OpenAIRE
Journal :
Information Fusion (FUSION), 2010 13th Conference on, Information Fusion (FUSION), 2010 13th Conference on, Jul 2010, Edinburgh, United Kingdom. 7 p, HAL, Scopus-Elsevier
Accession number :
edsair.dedup.wf.001..70f062d7205fb1d6b953f5a885289404